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PREFACE

Preface
This guide explains how to use the PV-WAVE:Signal Processing Toolkit. The Sig-
nal Processing Toolkit provides a broad selection of pre-defined digital signal
processing functions, as well as functions that you can customize. It includes both
basic and advanced signal processing functions, as well as utility and source code
to help you develop your own custom functions.

This manual contains the following parts:

• Preface — Describes the contents of this manual, describes the intended
audience, lists the typographical conventions used, and explains how to obtain
customer support.

• Chapter 1, Getting Started — Provides a basic overview of the Signal Pro-
cessing Toolkit along with information and examples to get you started.

• Chapter 2, Reference — An alphabetically arranged, detailed reference
describing each of the functions and procedures in the Signal Processing
Toolkit.

• Appendix A, Bibliography — A complete bibliography of technical literature
cited in this manual.

• Appendix B, Related Routines — A list of PV-WAVE Advantage routines
that are useful in digital signal processing.
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Intended Audience
This manual is intended for the knowledgeable digital signal processor. No attempt
is made to explain basic digital signal processing concepts and techniques.

It is assumed that you are already familiar with PV-WAVE Command Language
and/or PV-WAVE Advantage.

Typographical Conventions
The following typographical conventions are used in this guide:

• Code examples appear in this typeface.

• Code comments are shown in this typeface.

• Variables are shown in lowercase italics (myvar).

• Function and procedure names are shown in all capitals (XYOUTS).

• Keywords are shown in mixed case italic (XTitle).

• System variables are shown in regular mixed case type (!Version).



Preface  vii

Customer Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700
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FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk
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Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com
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CHAPTER

1

Getting Started
Signal processing is widely used in engineering, and scientific research and devel-
opment for representing, transforming, and manipulating signals and the
information they contain. This rapidly advancing technology has applications in
many areas including speech processing, data communications, acoustics, radar,
sonar, seismology, remote sensing, scientific and medical instrumentation, con-
sumer electronics, time-series analysis, and finance.

The PV-WAVE:Signal Processing Toolkit is a collection of digital signal process-
ing (DSP) functions that work in conjunction with PV-WAVE. This chapter
discusses the following main categories of functions found in the Signal Processing
Toolkit:

• Signals and Systems (Models and Analysis)

• Filter Approximation

• Filter Realization

• Transforms and Spectrum Analysis

• Statistical Signal Processing

• Polynomial Manipulation

• Optimization

• Plotting and Signal Generation
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The Signal Processing Toolkit functions are designed for easy use, while providing
many options for solving difficult problems.

An important part of the PV-WAVE:Signal Processing Toolkit is the PV-WAVE
platform. Several fundamental signal processing functions already exist in
PV-WAVE: including fast Fourier transform functions, numerical optimization
functions, matrix manipulation functions, and functions for finding polynomial
roots. The PV-WAVE:Signal Processing Toolkit greatly extends the signal pro-
cessing capabilities of PV-WAVE through a combination of additional signal
processing routines, and the ability to extend the functionality by customizing the
source code in the Signal Processing Toolkit to meet your needs.

Purpose of this Chapter

The purpose of this chapter is to establish terminology and provide a brief overview
of the functionality of the PV-WAVE:Signal Processing Toolkit. Examples in this
chapter demonstrate how the Signal Processing Toolkit functions can be used
together to solve signal processing problems. It is assumed that you have a basic
working knowledge of signals and systems, including linear systems, transform
analysis of linear systems (Fourier and z-transforms) and filtering.

Where appropriate, outside sources are cited, and full bibliographic entries are
listed in Appendix A, Bibliography. In addition, the section Background Reading
on page 29 is included in this chapter for those wishing to explore in greater detail
the signal processing topics discussed in this manual.
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Notation and Conventions Used in this User’s Guide

The standard notation in signal processing texts uses lower-case letters for time-
domain signals and upper-case for frequency-domain signals.

Use of Upper and Lower-Case Letters in This Manual

This manual follows the standard signal processing notation in the function discus-
sions and descriptions; however, in all code examples, the PV-WAVE convention
for capitalization is followed.

To illustrate the notation used in this manual, let’s look at the calling sequence and
discussion for the FIRFILT function. The FIRFILT calling sequence containing the
filter structure H(z) and the input array to be filtered, x, is as shown.

result = FIRFILT(h, x)

While the calling sequence uses h (lower-case) to represent the filter structure, the
discussion uses the standard notation for signal processing, H (upper-case).

Frequency Normalization in the Signal Processing Toolkit

All Signal Processing Toolkit functions use normalized frequencies for ease in
manipulation. The frequency normalization used results in a normalized Nyquist
frequency equal to one.

TIP Sometimes it is preferable to show actual frequency values on an output plot.
This can be easily accomplished by multiplying the normalized axis by the actual
Nyquist frequency when setting the plot parameters.
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Starting the Signal Processing Toolkit
If PV-WAVE isn’t already installed on your system, install it first. Once PV-WAVE
is installed, you’re ready to start PV-WAVE so you can enter commands or initial-
ize the Signal Processing Toolkit.

NOTE For information on installing the Signal Processing Toolkit, refer to the
installation booklet inside the CD-ROM case.

Starting PV-WAVE under Windows NT

Start PV-WAVE by clicking the PV-WAVE Console icon in the PV-WAVE Program
Group.

After a brief pause, the PV-WAVE Console window appears displaying the
prompt:
WAVE>

At this prompt, PV-WAVE is ready for you to enter commands or initialize the
Signal Processing Toolkit as described on page 5.

Starting PV-WAVE under Windows 95

Start PV-WAVE with the Start button. Select Start=>Programs=>
PV-WAVE 6.0=>PV-WAVE Console

After a brief pause, the PV-WAVE Console window appears displaying the
prompt:
WAVE>

At this prompt, PV-WAVE is ready for you to enter commands or
initialize the Signal Processing Toolkit as described on page 5.

Starting PV-WAVE under UNIX

Start PV-WAVE by entering the following command at your UNIX system prompt:

(UNIX) wave

The command line prompt, WAVE> appears in your window.

At this prompt, PV-WAVE is ready for you to enter commands or
initialize the Signal Processing Toolkit as described below.
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Starting the Signal Processing Toolkit from the WAVE>
Prompt

On all platforms, you can start the Signal Processing Toolkit from the WAVE>
prompt, by doing the following:

• At the WAVE> prompt, enter the following commands to load and initialize
the PV-WAVE:IMSL Mathematics, PV-WAVE:IMSL Statistics and the
PV-WAVE:Signal Processing Toolkit:

WAVE> @math_startup

WAVE> @stat_startup

WAVE> @sigpro_startup

• Once you see the following message, you are ready to use the PV-WAVE:Sig-
nal Processing Toolkit.

PV-WAVE:Signal Processing Toolkit is Initialized.

Stopping the Signal Processing Toolkit
If the PV-WAVE:Signal Processing Toolkit is loaded and you want to exit the Sig-
nal Processing Toolkit, perform the following procedure:

• At the WAVE>  prompt, enter the following command to unload the
PV-WAVE:Signal Processing Toolkit.

WAVE> @sigpro_unload

Unloading returns your system to the state it was in before using the Signal Pro-
cessing Toolkit by doing the following three things:

• It unloads the PV-WAVE:Signal Processing Toolkit functions from memory.

• It returns the Signal Processing Toolkit license to the license manager, freeing
the license up for others to use.

• And it deletes all common variables in SIGPRO_COMMON.
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Running the Signal Processing Toolkit Test Suite
A test suite is included with the PV-WAVE:Signal Processing Toolkit which may
be used to accomplish several things. First, running the test suite is an easy way to
verify that the Signal Processing Toolkit is installed properly. Second, you can look
at the test suite code which provides examples of Signal Processing Toolkit func-
tionality. And third, the test suite provides a quick, demonstration of the graphic
capabilities of the Signal Processing Toolkit.

The only requirement for running the test suite is that the PV-WAVE:Signal Pro-
cessing Toolkit must first be installed. After that is done, all that is necessary is to
enter the following command at the WAVE> prompt:

WAVE> SIGPRO_TEST

The tests take approximately 10 minutes to run depending on your machine and the
amount of time you spend observing each of the tests which require a keystroke to
continue.
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Signals and Systems Used in Signal Processing
In mathematical terms, signals are functions of an independent variable, which
may be continuous or discrete. By convention, the independent variable is referred
to as “time.” Continuous-time signals are termed analog signals, while discrete-
time signals are called digital. Discrete-time signals, also called sequences, are typ-
ically obtained by sampling continuous-time signals.

The PV-WAVE:Signal Processing Toolkit functions are used to process discrete-
time or digital signals. Within the Signal Processing Toolkit, discrete-time signals
are represented as arrays of numerical values that have been sequentially sampled
at specific time intervals. In this manual, signals are referred to using the sequence
notation:

x(n), n = 0, ..., N – 1 ,

the same notation for accessing the elements of an array in PV-WAVE.

“Signal processing” refers to applying a function

T(.)

to a signal x(n) to obtain a “processed” signal, y(n) = T(x(n)). The function

T(.)

is referred to as the system transfer function. The Signal Processing Toolkit pro-
vides a large class of routines that design and apply the transfer functions used most
often in digital signal processing.

System Transfer Models and the Digital Filter Data
Structure

The definition of a system transfer function is very broad. By far, the most com-
monly used transfer functions are those that are linear and time-invariant.

Linear System Models

Linear and time-invariant systems are represented by the convolution operation

,y n( ) x k( )h n k–( )
k ∞–=

∞

∑=
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where the sequence h(n) is the impulse response of the system. The class of linear
time-invariant systems is very large. Among all such systems, the one defined by
the linear constant-coefficient difference equation (EQ1) is central to practical
applications of signal processing.

y(n) = b0x(n) + b1x(n – 1) + ... + bMx(n – M)
– a1y(n – 1) – a2y(n – 2) – ... – aNy(n – N)  (EQ 1)

The z-transform of this difference equation is given by

Y(z) = H(z)X(z),

where X(z) and Y(z) are the z-transforms of the sequences x(n) and y(n), respec-
tively, and H(z) is the rational transfer function

(EQ 2)

The function H(z) is simply referred to as a digital filter. If the filter coefficients sat-
isfy an = 0 for n = 1, 2, ..., N, then the filter has finite impulse response (FIR).
Otherwise, if an ≠ 0 for n > 1, the filter has infinite impulse response (IIR).

There are many ways to rearrange the difference equation (EQ 1) and transfer func-
tion (EQ 2). Standard canonic forms, in addition to the transfer function form (EQ
2), include the zero-pole-gain (first order cascade) form, second order cascade
form, partial fraction (first order parallel) form, second order parallel form, and
state-space form (for single input and single output). All of these canonic forms are
theoretically equivalent to the transfer function form (EQ 2).

In practice, with finite precision arithmetic, the various canonic forms provide
varying degrees of numerical precision. The PV-WAVE:Signal Processing Toolkit
uses the transfer function canonic form, and all computations that use this canonic
form are carried out using double-precision arithmetic. If you require any of the
other canonic forms for their application, it is possible to transfer back and forth
between the various forms using the fundamental polynomial manipulation func-
tions (see Polynomial Manipulation on page 25) provided in the Signal Processing
Toolkit

H z( ) B z( )
A z( )
----------

b0 b1z 1– … bMz M–+ + +

1 a1z 1– … aNz N–+ + +
-----------------------------------------------------------= =
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Filter Data Structures

Because the rational transfer function model

is so important to classical signal processing, the PV-WAVE:Signal Processing
Toolkit uses a data structure to represent the rational transfer functions and simplify
your task of keeping track of the numerator and denominator coefficients.

Routines for accessing the filter structure information are summarized in the fol-
lowing table. For detailed information, see Chapter 2, Reference.

The basic information contained within the filter structure includes an array of real
numerator coefficients, an array of real denominator coefficients, and a name
string. Within the filter structure, the coefficients are represented in double
precision.

All filter approximation and realization functions in the PV-WAVE:Signal Pro-
cessing Toolkit use filter structures. The following example illustrates the use of a
filter structure.

numerator = [1, 3, 3, 1]

; Numerator coefficients of the rational transfer function.

denominator = [1, 0, 1/3]

; Denominator coefficients of the rational transfer function.

h = FILTSTR(numerator, denominator, Name = 'example')

; Places the filter coefficients into the filter structure.

PARSEFILT, h, filtname, b, a

; Extracts the filter coefficients from the filter structure.

PRINT, filtname

example

Filter Data Structure Routines

Routine Description

FILTSTR (*) Place information into filter structure.

PARSEFILT (*) Extract information from filter structure.

* function uses the digital filter data structure

H z( ) B z( )
A z( )
----------

b0 b1z 1– … bMz M–+ + +

1 a1z 1– … aNz N–+ + +
-----------------------------------------------------------= =
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PM, b

1.0000000

3.0000000

3.0000000

1.0000000

PM, a

1.0000000

0.0000000

0.3333333

Digital Filter Analysis Techniques

Two of the most basic techniques used in analyzing digital filters are determining
the frequency response and determining the impulse response of a rational transfer
function. The Signal Processing Toolkit functions that perform these operations are
summarized in the following table. For detailed information, see Chapter 2,
Reference.

Filter Analysis Functions

Function Description

ABS (*) Magnitude of a complex array

ARG Phase of a complex array

FREQRESP_S (**) Complex frequency response of analog transfer
function (Bode plot)

FREQRESP_Z (**) Complex frequency response of digital transfer
function

IMPRESP Impulse response of a filter

* function reference found in PV-WAVE Reference
** function uses the digital filter data structure
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The following example illustrates the use of the filter analysis functions by
computing the frequency response of a first order Butterworth lowpass filter with a
normalized frequency cutoff of 0.2049. The resulting magnitude and phase plots
for the frequency response of the filter in this example code are shown in Figure 1-
1.

h = FILTSTR([.25, .25],[1, -.5])

; Places the Butterworth filter coefficients into the filter structure.

hf = FREQRESP_Z(h, Outfreq = f)

; Computes the complex frequency response of the filter on the
; unit circle.

!P.Multi = [0, 1, 2]

; Produce one column of two plots.

PLOT, f, ABS(hf), Title = 'Magnitude Response'

; Plot the magnitude of the complex frequency response
; (Figure 1-1 (a)).

PLOT, f, ARG(hf), Title = 'Phase Response'

; Plot the phase of the complex frequency response (Figure 1-1 (b)).

Figure 1-1 The magnitude response (a) and phase response (b) of a first order Butterworth
lowpass filter.

(a)

(b)
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Filter Approximation
Digital filter design problems consist of two parts, approximation and realization.
This section discusses the PV-WAVE:Signal Processing Toolkit functions for
approximating digital filters. The Filter Realization section discusses the routines
for realizing digital filters.

Digital filter approximation problems consist of selecting the coefficients of the
rational transfer function H(z),

in order to achieve some desired result when the filter is applied to a signal. All of
the filter approximation routines in the PV-WAVE:Signal Processing Toolkit return
the filter coefficients in a digital filter data structure.

Classical FIR and IIR Filter Approximation

Classical FIR and IIR filter approximation problems concern the approximation of
the ideal lowpass, highpass, bandpass, and bandstop filters as illustrated in Figure
1-2.

H z( ) B z( )
A z( )
----------

b0 b1z 1– … bMz M–+ + +

1 a1z 1– … aNz N–+ + +
-----------------------------------------------------------= =
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Figure 1-2 Ideal filters used in classical FIR and IIR filter approximation.

A summary of PV-WAVE:Signal Processing Toolkit functions for solving classical
filter design problems is listed in the following table. FIR and IIR filter approxima-
tions use separate functions in the Signal Processing Toolkit. For detailed
information, see Chapter 2, Reference.

1.0

1.00 ff1
Lowpass

1.0

1.00 ff1 f2
Bandpass

1.0

1.00 ff1 f2

Bandstop

1.0

1.00 ff1
Highpass



14  Chapter 1: Getting Started PV-WAVE:Signal Processing User’s Guide

FIR Filter Approximation

The classical approach to FIR filter design uses window functions. This approach
first determines the inverse Fourier transform of the ideal filter frequency response

and then multiplies this response by an appropriate window function.

The following example illustrates the design of a windowed bandpass filter. Figure
1-3 shows the resulting filter frequency response.

w = FIRWIN(55, /Blackman)

; Computes a window sequence.

h = FIRDESIGN(w, 0.33, 0.66, /Bandpass)

; Design a windowed FIR filter with normalized cutoff frequencies
; of 0.33 and 0.66.

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf)

; Plot the magnitude of the filter frequency response (see Figure 1-3).

Classical Filter Approximation Functions

Function Description

BILINTRANS (*) Bilinear transform

FIRDESIGN (*) FIR lowpass, highpass, bandpass, bandstop fil-
ter design

FIRLS (*) FIR multiple bandpass FIR filter design

FIRWIN FIR window functions

FREQTRANS (*) IIR filter frequency transformation

FREQTRANSDESIGN  IIR filter frequency transformation design for
multiple bandpass IIR filter design

IIRDESIGN (*) IIR Butterworth, Chebyshev I, Chebyshev II,
and elliptic filter design

 IIRORDER IIR filter order estimation

* function uses the digital filter data structure

Hideal e jπf( )
1, f in passband

0, f in stopband
=
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Figure 1-3 Windowed bandpass filter frequency response.

IIR Filter Approximation

One of the key features of the PV-WAVE:Signal Processing Toolkit is the flexibil-
ity of IIR filter design which results from the approach used in applying
transformations in IIR filter design. This approach enables you to design all of the
filters in the classical approach, and has the added advantage of simplifying the
design of multiple bandpass filters.

The classical approach to IIR filter design starts with an analog lowpass filter pro-
totype and then applies various frequency transformations to arrive at the desired
digital filter. There are two approaches to applying transformations to an analog
lowpass filter prototype as illustrated in Figure 1-4. The top path in the figure illus-
trates the standard approach taken in IIR filter design, and the bottom path
illustrates the alternate approach used in the PV-WAVE:Signal Processing Toolkit.
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Figure 1-4 Transformation application approaches. The top path represents the standard
approach used by signal processors. The bottom path represents the approach used by the
Signal Processing Toolkit.

The Standard IIR Approximation Approach

The approach illustrated in the top path of Figure 1-4 is the approach most often
employed by signal processors. This standard approach first transforms the analog
lowpass filter prototype HLP(s) into an appropriate lowpass, highpass, bandpass, or
bandstop filter

,

and then uses the bilinear transform to obtain a digital filter H(z).

The PV-WAVE:Signal Processing Toolkit Approach

The approach used in the Signal Processing Toolkit is shown in the bottom path in
Figure 1-4. This alternate approach can design all of the filters available using the
standard approach, but has the added advantage of simplifying multiple bandpass
filter design. This approach first transforms the analog lowpass filter prototype
HLP(s) into a digital lowpass filter prototype

using the bilinear transform. Then a frequency transformation is applied to obtain
an appropriate lowpass, highpass, bandpass, or bandstop digital filter H(z).

The following example illustrates the ease in designing a multiple bandpass elliptic
filter using the PV-WAVE:Signal Processing Toolkit.

!P.Multi = [0, 1, 2]

hlp = IIRDESIGN(3, 0.5, 0.1, 0.1, /Ellip)

; Design a digital lowpass filter prototype with a frequency band
; edge of 0.5.

Ĥ s( )

ĤLP z( )
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hlpf = FREQRESP_Z(hlp, Outfreq = f)

PLOT, f, ABS(hlpf), $
Title = 'Lowpass Prototype Filter'

; Plot the magnitude frequency response of the lowpass filter
; prototype.

p = FREQTRANSDESIGN([.1, .3, .4, .6, .8])

; Design a frequency transformation for a multiple bandpass filter
; with frequency band edges of 0.1, 0.3, 0.4, 0.6, and 0.8.

hbp = FREQTRANS(hlp, p)

; Apply the frequency transformation to the lowpass filter prototype.

hbpf = FREQRESP_Z(hbp, Outfreq = f)

PLOT, f, ABS(hbpf), $
Title = 'Multiple Bandpass Filter'

; Plot the magnitude response of the multiple bandpass filter.

In Figure 1-5, (a) shows the magnitude frequency response of the original lowpass
filter, and (b) shows the response after applying the frequency transformation to
obtain the multiple bandpass filter.

Figure 1-5 A multiple bandpass filter (b) designed from a prototype digital lowpass filter (a)
using the Signal Processing Toolkit approach to IIR filter design.

(b)

(a)
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Advanced and Multirate Filter Approximation

The PV-WAVE:Signal Processing Toolkit also includes several advanced filter
approximation functions and multirate filter approximation functions.

The advanced filter approximation functions produce filters that are optimal sub-
ject to various constraints, such as least-squares error criteria, Chebyshev error
criteria, and moment preserving criteria.The least-squares filter approximation
functions shown in the following table can also be used to obtain filters that inter-
polate a given set of impulse or frequency response values. For detailed
information, see Chapter 2, Reference.

The next table shows the list of multirate filter approximation functions that pro-
duce filters which are used in standard multirate filtering operations such as
decimation and interpolation. For detailed information, see Chapter 2, Reference.

Advanced Filter Approximation Functions

Function Description

FIRLS (*) Frequency domain least-squares FIR filter design

IIRLS (*) Frequency and time domain least-squares filter design

REMEZ (*) Optimal Chebyshev error FIR filter design (Parks-
McClellan algorithm)

SGFDESIGN (*) Optimal Savitsky-Golay FIR filter design

* function uses digital filter data structure

Multirate Filter Approximation Functions

Function Description

FILTDOWNDESIGN (*) Decimation filter design

FILTUPDESIGN (*) Interpolation filter design

QMFDESIGN (*) Quadrature mirror filter design

* function uses digital filter data structure
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Filter Realization
The digital filter realization problem is concerned with numerically computing the
output signal y(n) via the difference equation

y(n) = b0x(n) + b1x(n – 1) + ... + bMx(n – M)
– a1y(n – 1) – a2y(n – 2) – ... – aNy(n – N) ,

with input signal x(n). The PV-WAVE:Signal Processing Toolkit includes func-
tions for realizing FIR, IIR and multirate digital filters.

Standard FIR and IIR Filter Realization
Functions for realizing FIR and IIR filters are summarized in the following table.
For detailed information, see Chapter 2, Reference.

FILTER implements both FIR and IIR filters in a fashion that is transparent to you,
and it is the workhorse used in most applications. The FIRFILT and IIRFILT func-
tions provide you with increased control over how the FIR and IIR filters are
realized.
The following example shows a typical application of the FILTER function.

!P.Multi = [0, 1, 1]

t = FINDGEN(1024)

s1 = SIN(0.6*t)

s2 = SIN(1.2*t)

; Generates two narrow band signals.

x = s1 + s2

; Combines the two signals.

f = FINDGEN(512)/511

; Generate the abscissa values for the normalized frequency.

PLOT, f, (ABS(FFTCOMP(x, /Complex)))(0:512), $
Title = 'Original'

; Plot the magnitude frequency response of the combined signal.

FIR and IIR Filter Realization

Function Description

FILTER(*) Basic FIR and IIR filter realization

FIRFILT (*) Convolution and FFT-based filter realization of FIR filters

IIRFILT (*) Causal and anti-causal (forward-backward) IIR filter realization

* function uses digital filter data structure
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h = FIRDESIGN(101, 0.1, 0.25, /Bandpass)

; Approximate a bandpass filter to isolate the first signal.

y = FILTER(h, x)

; Apply the filter to the signal.

PLOT, f, (ABS(FFTCOMP(y, /Complex)))(0:512), $
Title = 'Filtered'

; Plot the magnitude frequency response of the filtered signal.

The original combined narrow band signal is shown in (a) and the results of the
example code using the FILTER function are shown in (b) of Figure 1-6.

Figure 1-6 The result (b) of filtering a combined narrow band signal (a) using the FILTER
function.

The next example illustrates how IIRFILT may be used to perform causal and anti-
causal filtering.

!P.Multi = [0, 1, 2]

x = ((INDGEN(1024)+64) MOD 256) GT 128

; Generate a square wave.

h = IIRDESIGN(5, 0.25, 0.01, 0.01, /Ellip)

; Design an elliptical lowpass filter.

PLOT, IIRFILT(h, x), Title = 'Causal Filtering'

; Plot the causal filtering of the square wave.

PLOT, IIRFILT(h, x, /Forward_back), Title = 'Anti-Causal Filtering'

; Plot the anti-causal (forward-backward) filtering of the
; square wave. Notice that the result is symmetric, and there
; is no phase distortion.

(a)

(b)
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Figure 1-7 (a) shows the causal (forward) filter results and (b) shows the anti-causal
(forward-backward) filter results obtained by applying the IIRFILT function to the
square wave.

Figure 1-7 Example of causal (a) and anti-causal (b) filtering of a square wave using
IIRFILT.

Multirate Filter Realization

Functions and procedures for realizing multirate filters are summarized in the fol-
lowing table. For detailed information, see Chapter 2, Reference.

FILTDOWN and FILTUP can be combined to achieve most multirate signal pro-
cessing techniques. The commonly used quadrature mirror filter operation is
provided in the QMF procedure.

Multirate Filter Realization Routines

Routine Description

FILTDOWN (*) Decimation filter

FILTUP(*) Interpolation filter

QMF (*) Quadrature mirror filter

* routine uses digital filter data structure

(a)

(b)
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Transforms and Spectrum Analysis
One of the most important operations in signal processing is transforming a signal
from one domain to another to analyze and extract information. The PV-WAVE:Sig-
nal Processing Toolkit provides several functions and procedures for the Fourier
and wavelet analysis of a signal. These routines are listed in the following table.
For detailed information, see Chapter 2, Reference.

The fundamental computational tool in signal processing is the fast Fourier trans-
form (FFT). The PV-WAVE:Signal Processing Toolkit provides several methods
of computing the FFT.

The SPECTRUM and SPECTROGRAM functions provide essential tools for Fou-
rier analysis of stationary and non-stationary signals. Non-stationary signals can
also be effectively analyzed using the WAVELET function, which computes the
wavelet transform of a signal using compactly supported orthonormal wavelets.

In the following example, SPECTROGRAM is used on a file containing a signal of
a human voice.

(UNIX) To open the file on a UNIX system:

OPENR, u, GETENV(’VNI_DIR’)+ $
’/sigpro-1_1/test/voice.dat’, /Get_Lun

(OpenVMS) To open the file on an OpenVMS system:

OPENR, u, GETENV(’VNI_DIR’)+ $
’[SIGPRO-1_1.TEST]VOICE.DAT’, /Get_Lun

(Windows) To open the file on a Windows system:

OPENR, u, GETENV(’VNI_DIR’)+ $
’\sigpro-1_1\test\voice.dat’, /Get_Lun

Transforms and Spectrum Analysis Routines

Routine Description

DCMPLXFFT Double-precision complex fast Fourier transform

FFTCOMP Fast Fourier transform

FFTINIT Fast Fourier transform initialization

SPECTROGRAM Spectrogram or short-time Fourier transform analysis

SPECTRUM Power spectrum analysis (power spectral density)

WAVELET (*) Wavelet transform

* function uses digital filter data structure
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x = BYTARR(7519)

READU, u, x

CLOSE, u

xs = 400

ys = 400

WINDOW, XSize = xs, YSize = ys

PLOT, x, Position = [0, .5, 1, 1], $
XStyle = 5, YStyle = 5, /Normal

; Plot the original signal.

mat = SPECTROGRAM(x, 256)

; Compute the spectrogram of the original signal.

TVSCL, HIST_EQUAL(CONGRID( $
ALOG10(mat > 1.e-5), xs, ys/2))

; Display the spectrogram as an image.

The original voice signal, a non-stationary signal with amplitude and frequency
changing over time is shown in (a) of Figure 1-8. The resulting spectrogram image
shown in (b) of Figure 1-8 is the visual representation of the power spectral density
of the signal versus time. The magnitude of the power spectrum image in (b) is
indicated by the grey (or color) scale.

Figure 1-8 A voice signal (a) is processed with SPECTROGRAM and displayed in
PV-WAVE as an image.

(a)

(b)
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Statistical Signal Processing
Just as linear shift-invariant systems and rational transfer models are central to
classical signal processing, stationary signals and Toeplitz covariance matrix mod-
els are central to statistical signal processing. An extensive selection of routines is
provided for solving fundamental statistical signal processing problems.

The PV-WAVE:Signal Processing Toolkit provides a complete suite of routines for
manipulating Toeplitz matrix equations: the JURYRC, LEVCORR and LEV-
DURB procedures, and the TOEPSOL function. These routines and the other
various statistical signal processing functions are summarized in the following
table. For more detailed information, see Chapter 2, Reference.

The optimal linear phase FIR Wiener filter design problem is solved using the
FIRLS function. A connection between the transfer function models of classical
signal processing and the stationary random signal models of statistical signal pro-
cessing is provided by Prony’s method which is part of the IIRLS function.

The most important signals in theoretical statistical signal processing are normal
random variables and quadratic forms of normal random variables. The PV-WAVE
RANDOM and RANDOMOPT functions provide the basic tools for generating
such random variables. The PV-WAVE reference pages for these routines are
reproduced in this manual for your convenience.

Statistical Signal Processing Routines

Routine Description

JURYRC Jury (reflection coefficient) algorithm

LEVCORR Auto-correlation sequence computation from factored
Toeplitz forms

LEVDURB Levinson-Durbin algorithm for factoring Toeplitz matrices

TOEPSOL Levinson’s algorithm for solving Toeplitz linear equations

FIRLS (*) FIR Wiener filter design

IIRLS (*) Prony’s and frequency-sampling methods

LPC (*) Linear prediction coefficients

RANDOM Random number generation

RANDOMOPT Random number generation control

* function uses digital filter data structure
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Polynomial Manipulation
The most fundamental function in classical signal processing is the rational transfer
function

which is a ratio of two polynomials in z–1. The ability to manipulate polynomials
is therefore one of the most fundamental operations in signal processing. The
PV-WAVE:Signal Processing Toolkit provides a rich set of polynomial manipula-
tion functions that greatly enhance your ability to extend the functionality of the
Signal Processing Toolkit.

The polynomial manipulation functions belong to one of two classes. Those that
manipulate standard polynomials of the form

c(x) = c0 + c1x + c2x2 + ... + cNxN

are summarized in the following table. For detailed information, see Chapter 2,
Reference.

Standard Polynomial Manipulation Routines

Routine Description

CONVOL1D One dimensional convolution

DBLPOLY Polynomial function evaluation

PAIRCONJ Pair conjugate complex numbers

PAIRINV Pair reciprocal complex numbers

P_DEG Numerical determination of polynomial degree

P_DIV Polynomial division

P_MULT Polynomial multiplication

P_SQRT Polynomial spectral factorization

P_SUM Polynomial sum

ROOT2POLY Compute coefficients of polynomial with specified roots

ZEROPOLY Polynomial root finding

H z( ) B z( )
A z( )
----------

b0 b1z 1– … bMz M–+ + +

1 a1z 1– … aNz N–+ + +
----------------------------------------------------------- ,= =
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Those functions that manipulate polynomials in z–1 of the form

D(z) = d0 + d1z–1 + d2z–2 + ... + dNz–N

are summarized in the following table. For more information, see Chapter 2,
Reference.

A common signal processing problem is having to simultaneously manipulate
polynomials in both z and z–1. For example, the magnitude frequency response of
a real-coefficient FIR filter

B(z) = b0 + b1z–1 + b2z–2 + ... + bMz–M

may be found by evaluating B(z)B(z–1) for values of z on the unit circle.

The REVERSE function in PV-WAVE is useful for manipulating polynomials in z
and z–1. The mathematical equivalent of reversing the coefficients of a polynomial
is given by

 .

One way to compute D(z) = B(z)B(z–1) is to compute

,

which has the same coefficient ordering as D(z).

Using PV-WAVE:Signal Processing Toolkit commands, the operation

D(z) = B(z)B(z–1)

is simply

d = P_MULT(b, REVERSE(b))

where the arrays b and d contain the coefficients of the polynomials B(z) and D(z),
respectively.

Functions for Polynomials in z–1

Function Description

P_STAB Polynomial stabilization

SCHURCOHN Schur-Cohn stability test

B̃ z( ) z M– B z 1–( ) b0z M– b+ 1z M– 1+ … bM+ += =

B z( )B̃ z( ) z M– B z( )B z 1–( )=
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Optimization
Most signal processing design problems involve finding the solution to optimiza-
tion problems. For example, the routines FILTUPDESIGN, FIRLS, IIRDESIGN,
IIRLS, REMEZ and SGFDESIGN are all optimal filter design solutions under
various constraints and error functionals. In many practical applications, however,
custom design of optimal signal processing operations is desirable.

PV-WAVE provides many numerical optimization functions for solving advanced
signal processing problems. Because optimization problems occur so often in sig-
nal processing, the reference pages of the optimization routines available in
PV-WAVE are included in this manual for your convenience. These optimization
functions are listed in the following table. For detailed information, see Chapter 2,
Reference.

PV-WAVE functions for performing numerical integration and computing array
norms, such as INTFCN and NORM are also included in this manual. These func-
tions are often used in conjunction with optimization routines to evaluate error
functionals.

PV-WAVE Optimization Functions

Function Description

FMIN Univariate unconstrained minimization

FMINV Multivariate unconstrained minimization

INTFCN Numerical integration or quadrature

LINPROG Linear programming constrained minimization

NLINLSQ Nonlinear least-squares unconstrained minimization

NONLINPROG Nonlinear programming nonlinearly constrained
minimization

NORM Computes various array norms

QUADPROG Quadratic programming constrained minimization
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Plotting and Signal Generation Routines
PV-WAVE provides a rich set of plotting routines. Those plotting routines are aug-
mented in the PV-WAVE:Signal Processing Toolkit with some specialized plotting
routines. The Signal Processing Toolkit function SIGNAL, for instance allows you
to easily generate any of eight commonly used signals. The additional plotting and
signal generation routines provided in the Signal Processing Toolkit are listed in
the following table. For more information, see Chapter 2, Reference.

Functional Overlaps
During the development of the PV-WAVE:Signal Processing Toolkit some func-
tional overlap with PV-WAVE was introduced. The following areas have been
identified as having overlap.
• Fourier Transforms

PV-WAVE already has the function FFTCOMP for computing the real or com-
plex FFT, but since a double-precision complex FFT was needed for
PV-WAVE:Signal Processing Toolkit, the function DCMPLXFFT has been
implemented.

• Polynomial Evaluation
The PV-WAVE function POLY performs evaluation of polynomials, however
since a double-precision complex evaluation was needed for PV-WAVE:Signal
Processing Toolkit, the function DBLPOLY was devised.

• DIGITAL_FILTER
DIGITAL_FILTER is an older PV-WAVE function which, like the Signal Pro-
cessing Toolkit FILTER and FIRWIN functions uses a Kaiser window to filter
an input signal. Although DIGITAL_FILTER is available, as a signal processor
you should use the functions FIRWIN and FILTER to perform data filtering
with a Kaiser window.

Plotting and Signal Generation Routines

Routine Description

OPLOTCOMB Comb plot over a previously drawn plot

PLOTCOMB Comb plot

PLOTZP Zero-pole plot

REFLINES Reference lines to indicate specific axis values

SIGNAL Generates commonly used signals
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Background Reading
If you wish to explore the various signal processing topics discussed in this manual
in greater detail, the following list of suggested references is a good starting point.
Full bibliographic entries for this suggested reading list are found in Appendix A,
Bibliography.

Signals and Systems

Signals and systems theory (including models and analysis) is the basic prerequi-
site for digital signal processing. Standard texts for these topics include Hamming,
1989; Jackson, 1991; Oppenheim, Willsky, and Young, 1983; Gabel and Roberts,
1987.

Filter Approximation and Realization

Many standard texts are available that discuss basic and advanced digital filtering
topics, including Oppenheim and Schafer, 1989; Parks and Burrus, 1987; Proakis
and Manolakis, 1992; and Roberts and Mullis, 1987.

Good references on multirate filtering and signal processing include Vaidyanathan,
1993; and Akansu and Haddad, 1992. For a standard application requiring multiple
bandpass filters, see Jayant and Noll, 1984, p. 641.

Transforms and Spectrum Analysis

Most introductory digital signal processing texts include chapters on the fast Fou-
rier transform, including those by Oppenheim and Schafer, 1989; Parks and
Burrus, 1987; Proakis and Manolakis, 1992; and Roberts and Mullis, 1987.

Standard references on spectrum analysis and spectrograms include Kay, 1987;
Kay, 1993; Marple, 1987; and Nawab and Quatieri, 1988; in addition to such stan-
dard signal processing texts by Oppenheim and Schafer, 1989; Parks and Burrus,
1987; Proakis and Manolakis, 1992; and Roberts and Mullis, 1987.

References that discuss wavelets as they relate to signal processing problems
include Rioul and Vetterli, 1991; and Vaidyanathan, 1993.

A discussion on wavelets as they relate to signal processing problems can be found
in Vaidyanathan, 1993.

More mathematical treatments of wavelet theory can be found in Daubechies,
1992; and Chui, 1992.
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Statistical Signal Processing

Recent texts on statistical signal processing include those by Scharf, 1991; Kay,
1993; Porat, 1994; and Therrien, 1992.

Good coverage of the various Toeplitz matrix operations that are commonly used
in statistical signal processing may be found in Roberts and Mullis, 1987, Chapter
11.

Polynomial Manipulation

Thorough coverage of polynomial manipulation and its importance to efficient sig-
nal processing algorithms may be found in Blahut, 1985.

Optimization

A standard text on the basics of solving optimization problems is by Luenberger,
1984.
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CHAPTER

2

Reference
This chapter describes each of the procedures and functions of the
PV-WAVE:Signal Processing Toolkit. These descriptions are arranged in
alphabetical order by routine name.

For a list of PV-WAVE routines that can be used in signal processing applications,
see Appendix B, Related Routines.

ARG Function
Computes the phase angle, in radians, of a complex scalar or array.

Usage

result = ARG(z)

Input Parameters

z — A complex scalar or array.

Returned Value

result — A double-precision scalar or array. The range of the returned values is
between –π and π.
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Keywords

None.

Discussion

The function divides the imaginary part of z by the real part of z and computes the
arctangent of the quotient.

For a given a complex number of the form

z = x + jy = rej φ ,

the function computes φ as

φ = atan(y/x).

Example

ARG is used to compute the polar form of the complex number z = 3 + j4.

z = COMPLEX(3, 4)

; Create a complex variable.

r = ABS(z)

phi = ARG(z)

PRINT, r, phi

5.00 0.927295

See Also

In the PV-WAVE Reference:

ABS, ATAN, COMPLEX
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BILINTRANS Function
Computes the bilinear transform of an analog transfer function.

Usage

result = BILINTRANS(h [, k])

Input Parameters

h — A valid analog filter structure defined as the ratio of two polynomials in pos-
itive powers of s.

k — (optional) A multiplier constant. (Default: k = 1)

Returned Value

result — A digital filter structure containing the transfer function made of a ratio
of polynomials in negative powers of z.

Keywords

Newname — A scalar string specifying a name for the new filter structure. If not
used, the new filter structure has the same name as the old one.

Discussion

For a given analog transfer function of the form

where Ba and Aa are polynomials in positive powers of s, BILINTRANS performs
a bilinear transformation

to obtain a digital rational transfer function Hd(z) in negative powers of z.

Ha s( )
Ba s( )

Aa s( )
------------

b0s
b1s

s b2s
s2 … bMs

sM+ + + +

a0s
a1s

s a2s
s2 … aNs

sN+ + + +
----------------------------------------------------------------------------= =

Hd z( ) H s( )
s k z 1–( ) z 1+( )⁄[ ]=

Bd z( )

Ad z( )
------------= =

d z( )
b0z

b1z
z 1– b2z

z 2– … bMz
z M–+ + + +

a0z
a1z

z 1– a2z
z 2– … aNz

z N–+ + + +
-------------------------------------------------------------------------------------=
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Example

In this example we call BILINTRANS with a simple lowpass filter and plot the fre-
quency response of both the analog and digital form of the filter.

b = [0.1]

a = [–0.1, 1.0]

h= FILTSTR(b, a)

; Define a simple analog lowpass filter H(s) = 0.1/(s – 0.1).

omega = FINDGEN(100)/50.0

PLOT, omega, ABS(FREQRESP_S(h, $
COMPLEX(FLTARR(100), omega))), Title = ’Analog’

; Plot the frequency response of the analog transfer function.
; See Figure 2-1 (a).

hd = BILINTRANS(h)

; Transform the analog transfer function to digital.

hdresp = FREQRESP_Z(hd, Outfreq = f)

PLOT, f, ABS(hdresp), Title = ’Digital’

; Plot the result. See Figure 2-1 (b).

Figure 2-1 Frequency response of the original analog filter (a) and the digital filter (b)
obtained using BILINTRANS.

See Also

FILTSTR

For Additional Information

Oppenheim and Schafer, 1989.
Parks and Burrus, 1987.
Proakis and Manolakis, 1988.
Roberts and Mullis, 1987.

(a) (b)
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CONVOL1D Function
Computes the discrete convolution of two sequences.

Usage

result = CONVOL1D(x, y)

Input Parameters

x — A one-dimensional array.

y — A one-dimensional array.

Returned Value

result — A one-dimensional array containing the discrete convolution of x and y.

Keywords

Direct — If set, the computation is performed using the direct method rather than
the FFT method, regardless of the size of the arrays.

Periodic — If present and nonzero, a circular convolution is computed.

Discussion

The function CONVOL1D computes the discrete convolution of two sequences
x(k) and y(k) given by

.

The values of x(n) and y(n – k) are assumed to be zero when the index is not
between [0, Nx – 1] and [0, Ny – 1], respectively.

If the lengths of the sequences are small, the direct sum formula is used. Otherwise,
for longer sequences the FFT is used to compute the convolution.

z k( ) x n( )y n k–( )
n

∑=



36  Chapter 2: Reference PV-WAVE:Signal Processing User’s Guide

Example

In this example, the convolution of x = [1, 2, 3, 2, 1] and y = [2, 2, 2] is computed.

x = [1, 2, 3, 2, 1]

y = [2, 2, 2]

; Define x and y.

PM, CONVOL1D(x, y)

2.0000000

6.0000000

12.000000

14.000000

12.000000

6.0000000

2.0000000
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DBLPOLY Function
Evaluates a polynomial function in double precision using Horner’s method.

Usage

result = DBLPOLY(x, coefficients)

Input Parameters

x — A scalar or array variable used to evaluate the polynomial.

coefficients — An array containing the coefficients of the polynomial which has
one more element than the degree of the polynomial function.

Returned Value
result — An array with the same dimensions as the input parameter x, containing
the polynomial function evaluated at x.

Keywords

None.

Discussion

DBLPOLY evaluates the polynomial function

c(x) = c0 + c1x + c2x2 + ... + cn–1xn–1 ,

where n is the dimension of c(x), and c0, c1, ..., cn–1 are the elements of the input
parameter coefficients.

DBLPOLY returns an array with the same dimensions as x.

DBLPOLY uses Horner’s method to evaluate a polynomial. The routine is the same
as the PV-WAVE POLY function, except when either parameter is complex. If
either parameter is complex, the result is computed with double-precision, as
opposed to the single precision arithmetic performed in POLY.

Example

Evaluate the polynomial c(z) = 1 + z3 at z = (1 + j).

PRINT, DBLPOLY(COMPLEX(1, 1), [1, 0, 0, 1])

-1.00000,      2.00000

See Also

In the PV-WAVE Reference: POLY
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DCMPLXFFT Procedure
Computes a complex fast Fourier transform (FFT) using double precision.

Usage

DCMPLXFFT, r_in, i_in, r_out, i_out

Input Parameters

r_in — The real part of the complex array to be transformed.

i_in — The imaginary part of the complex array to be transformed.

Output Parameters

r_out — The real part of the transformed array.

i_out — The imaginary part of the transformed array.

Keywords

Backward — If present and nonzero, an inverse FFT is computed.

Discussion

DCMPLXFFT uses the real FFT provided by FFTCOMP to compute a complex
FFT in double precision.

See Also

FFTCOMP

In the PV-WAVE Reference: FFT
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FFTCOMP Function
Computes the discrete Fourier transform of a real or complex sequence. Using key-
words, a real-to-complex transform or a two-dimensional complex Fourier
transform can be computed.

Usage

result = FFTCOMP(a)

Input Parameters

a — An array containing the periodic sequence.

Returned Value

result — The transformed sequence. If a is one-dimensional, the type of a deter-
mines whether the real or complex transform is computed. If a is two-dimensional,
the complex transform is always computed.

Keywords

Backward — If present and nonzero, the backward transform is computed. See the
Discussion section for more details on this option.

Complex — If present and nonzero, the complex transform is computed. If a is
complex, this keyword is not required to ensure that a complex transform is com-
puted. If a is real, it is promoted to complex internally.

Double — If present and nonzero, double precision is used.

Init_Params — An array containing parameters used when computing a one-
dimensional FFT. If FFTCOMP is used repeatedly with arrays of the same length
and data type, it is more efficient to compute these parameters only once with a call
to function FFTINIT.

Discussion

The default action of the function FFTCOMP is to compute the FFT of an array A,
with the type of FFT performed dependent upon the data type of the input array A.
(If A is a one-dimensional real array, the real FFT is computed; if A is a one-dimen-
sional complex array, the complex FFT is computed; and if A is a two-dimensional
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real or complex array, the complex FFT is computed.) If the complex FFT of a one-
dimensional real array is desired, keyword Complex should be specified. The
remainder of this section is divided into separate discussions of real and complex
FFTs.

Case 1: One-dimensional Real FFT

If A is one-dimensional and real, the function FFTCOMP computes the discrete
Fourier transform of a real array of length
n = N_ELEMENTS (A). The method used is a variant of the Cooley-Tukey algo-
rithm, which is most efficient when n is a product of small prime factors. If n
satisfies this condition, then the computational effort is proportional to nlogn.

By default, FFTCOMP computes the forward transform. If n is even, the forward
transform is as follows:

If n is odd, qm is defined as above for m from 1 to n – 1.

q2m 1– pk
2πkm

n
--------------cos

k 0=

n 1–

∑=

q2m 2– pk
2πkm

n
--------------sin

k 0=

n 1–

∑–=

q0 pk

k 0=

n 1–

∑=
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If the keyword Backward is specified, the backward transform is computed. If n is
even, the backward transform is as follows:

If n is odd, the following is true:

The backward Fourier transform is the non-normalized inverse of the forward Fou-
rier transform.

The FFTCOMP function is based on the real FFT in FFTPACK, which was devel-
oped by Paul Swarztrauber at the National Center for Atmospheric Research.

Case 2: One-dimensional Complex FFT

If A is one-dimensional and complex, function FFTCOMP computes the discrete
Fourier transform of a complex array of size
n = N_ELEMENTS (A). The method used is a variant of the Cooley-Tukey algo-
rithm, which is most efficient when n is a product of small prime factors. If n
satisfies this condition, the computational effort is proportional to nlogn.

By default, FFTCOMP computes the forward transform as in the following
equation.

.

Note, the Fourier transform can be inverted as follows:

.

This formula reveals the fact that, after properly normalizing the Fourier coeffi-
cients, you have coefficients for a trigonometric polynomial to interpolate the data.

qm p0 1–( )m pn 1– 2 p2k 1+
2πkm

n
--------------cos 

  2 p2k 2+
2πkm

n
--------------sin 

 

k 0=

n
2
--- 1–

∑–
k 0=

n
2
--- 1–

∑+ +=

qm p0 2 p2k 1+
2πkm

n
--------------cos 

  2 p2k 2+
2πkm

n
--------------sin 

 

k 0=

n 3–
2

------------

∑–
k 0=

n 3–
2

------------

∑+=

qk pme 2πjmk–( ) n⁄

m 0=

n 1–

∑=

pm
1
n
--- q je

2πjk m n⁄( )

k 0=

n 1–

∑=
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If the keyword Backward is used, the following computation is performed:

 .

Furthermore, the relation between the forward and backward transforms is that
they are non-normalized inverses of each other. In other words, the following code
fragment begins with an array p  and concludes with an array p2 = np:

q = FFTCOMP(p)

p2 = FFTCOMP(q, /Backward)

Case 3: Two-dimensional FFT

If A is two-dimensional and real or complex, function FFTCOMP computes the
discrete Fourier transform of a two-dimensional complex array of size n x m where
n = N_ELEMENTS (A (*, 0)) and
n = N_ELEMENTS (A (0, *)). The method used is a variant of the Cooley-Tukey
algorithm, which is most efficient when both n and m are a product of small prime
factors. If n and m satisfy this condition, then the computational effort is propor-
tional to nmlognm.

By default, given a two-dimensional array, FFTCOMP computes the forward trans-
form as in the following equation:

Note, the Fourier transform can be inverted as follows:

This formula reveals the fact that, after properly normalizing the Fourier coeffi-
cients, you have the coefficients for a trigonometric polynomial to interpolate the
data.

qk pme2πjm k n⁄( )

m 0=

n 1–

∑=

qkl pste
2πjks/n– e 2πjlt /m–

t 0=

m 1–

∑
s 0=

n 1–

∑=

pkl
1

nm
------- qste

2πjks/ne2πjlt /m

t 0=

m 1–

∑
s 0=

n 1–

∑=



FFTCOMP Function  43

If keyword Backward is used, the following computation is performed:

Example

In this example, a pure cosine wave is used as a data array, and its Fourier series is
recovered. The Fourier series is an array with all components zero except at the
appropriate frequency where it has an n/2.

n = 7

; Fill up the data array with a pure cosine wave.

p = COS(FINDGEN(n) * 2 * !Pi/n)

PM, p

1.00000

0.623490

-0.222521

-0.900969

-0.222521

0.623490

q = FFTCOMP(p)

; Compute the FFT.

PM, q, Format = ’(f8.3)’

0.000

3.500

0.000

-0.000

-0.000

0.000

-0.000

See Also

DCMPLXFFT, FFTINIT

In the PV-WAVE Reference:
FFT

pkl qste
2πjks/ne2πjlt /m

t 0=

m 1–

∑
s 0=

n 1–

∑=
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FFTINIT Function
Computes the parameters for a one-dimensional FFT to be used in function FFT-
COMP with keyword Init_Params.

Usage

result = FFTINIT(n)

Input Parameters

n — Length of the sequence to be transformed.

Returned Value

result — A one-dimensional array of length 2n + 15.

NOTE The resulting array can be used in the function FFTCOMP, along with the
optional keyword Init_Params.

Keywords

Complex — If present and nonzero, the parameters for a complex transform are
computed.

Double — If present and nonzero, double precision is used and the returned array
is double precision. This keyword does not have an effect if the initialization is
being computed for a complex FFT.

Discussion

FFTINIT should be used when many calls are to be made to function FFTCOMP
without changing the data type of the array and the length of the sequence. The
default action of FFTINIT is to compute the parameters necessary for a real FFT.
If parameters for a complex FFT are needed, keyword Complex should be
specified.

The FFTINIT function is based on routines in FFTPACK, which was developed by
Paul Swarztrauber at the National Center for Atmospheric Research.

See Also

FFTCOMP
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FILTDOWN Function
Decimation filter realization.

Usage

result = FILTDOWN([h,] x, m)

Input Parameters
h — (optional) An FIR filter. (Default: H(z) = 1)

x — A one-dimensional array containing the signal.

m — (scalar) The decimation factor. The parameter m must be less than or equal to
the length of x.

Returned Value
result — A one-dimensional array in double precision containing the filtered and
down-sampled input sequence.

Keywords
Full — Directs FILTDOWN to call FIRFILT with the Full keyword. If present and
nonzero, the entire result of the convolution of the input signal is returned, includ-
ing the edge effects which are normally cut off.

Discussion

FILTDOWN is designed to only work with FIR filters.

FILTDOWN realizes the multirate signal processing operation of filtering followed
by down-sampling (decimation) for finite impulse response (FIR) filters, H(z), as
shown in Figure 2-2.

Figure 2-2 The FILTDOWN operation.

H(z) M
x(n) y(n) z(n)
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The down-sampling operation illustrated in Figure 2-2 is given by the equation

z(n) = y(Mn) .

Example 1

Suppose x is an input signal of length 100. FILTDOWN is used to down-sample x,
so that only every third point in the signal array is returned.

x = RANDOM(100)

PRINT, N_ELEMENTS(x)

100

newx = FILTDOWN(x, 3)

PRINT, N_ELEMENTS(newx)

34

Example 2

In this example, an FIR filter is applied to a signal, and only every third point is
returned.

t = FINDGEN(100)/99

x = SIN(2*!Pi*t) + .4*RANDOM(100)

result = FILTDOWN(FILTSTR(FIRWIN(5), [1]), x, 3)

See Also

FILTDOWNDESIGN, FILTUP

For Additional Information

Crochiere and Rabiner, 1975, 1976.

Proakis and Manolakis, 1988.

Vaidyanathan, 1993.
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FILTDOWNDESIGN Function
Designs a filter to be used with FILTDOWN.

Usage

result = FILTDOWNDESIGN(m, nx)

Input Parameters

m — (scalar) The decimation factor indicating the increment between data values
to be returned. This is the input parameter m that is passed into FILTDOWN with
the returned filter.

nx — The number of samples of the signal to be used with FILTDOWN.

Returned Value

result — A filter structure to be used with FILTDOWN.

Keywords

None.

Discussion

FILTDOWNDESIGN uses FIRDESIGN to approximate an anti-aliasing filter with
normalized cutoff frequency of 1/m. A Hamming window is used in the filter
approximation.The order of this decimation filter is 1/5 the length of the signal, nx,
but never smaller than 16 and never greater than 128.

You may want to use the REMEZ function directly to create your own anti-aliasing
filter.

Example

In this example every other sample is removed from x.

t = FINDGEN(100)/99

x = SIN(2*!Pi*t) + .4*RANDOM(100)

; Create a signal.

m = 2

; Removes every other point of the filtered signal.

nx = N_ELEMENTS(x)

h = FILTDOWNDESIGN(m, nx)
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; Create an anti-aliasing filter.

newx = FILTDOWN(h, x, m)

; Filter and down-sample.

resp = ABS(FREQRESP_Z(h, Outfreq = f))

PLOT, f, resp, XTitle = ’1/m’, Title = $
’Filter Response for Various m’

; Plot the response of this filter (see Figure 2-3).

OPLOT, f, ABS(FREQRESP_Z(FILTDOWNDESIGN(3, nx))),$
Linestyle = 1

OPLOT, f, ABS(FREQRESP_Z(FILTDOWNDESIGN(4, nx))),$
Linestyle = 2

OPLOT, f, ABS(FREQRESP_Z(FILTDOWNDESIGN(5, nx))),$
Linestyle = 3

OPLOT, f, ABS(FREQRESP_Z(FILTDOWNDESIGN(6, nx))),$
Linestyle = 4

; Plot the response of the filter for greater values of m to show
; how the cutoff frequency decreases as m increases (Figure 2-3).

Figure 2-3 Decreasing cutoff frequency for increasing values of m, the decimation factor.

See Also

FILTDOWN, FIRFILT, REMEZ
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FILTER Function
Applies an IIR or FIR filter to a sequence.

Usage

result = FILTER(h, x)

Input Parameters

h — A valid FIR or IIR filter structure.

x — A one-dimensional array to be filtered.

Returned Value

result — A one-dimensional array containing the filtered values of x.

Keywords

None.

Discussion

FILTER simplifies access to the filtering methods available in the PV-WAVE:Sig-
nal Processing Toolkit. FILTER determines whether the filter structure being used,
h, is an FIR or an IIR filter type. It then calls the specific filtering routine appropri-
ate for the filter structure used (FIRFILT or IIRFILT).

The particular FIR or IIR filtering routine called by FILTER uses all the default set-
tings for the keyword parameters of that routine. For greater control of the filtering
method used, however, it is recommended that you use the appropriate filter func-
tion directly (see FIRFILT, IIRFILT).

Example

The following example shows a typical application of FILTER.

!P.Multi = [0, 1, 2]

t = FINDGEN(1024)

s1 = SIN(0.6*t)

s2 = SIN(1.2*t)
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s3 = SIN(1.9*t)

; Generate three bandpass signals.

x = s1 + s2 + s3

; Combine the three signals.

f = FINDGEN(512)/511

; Generate abscissa values for the normalized frequency.

PLOT, f, (ABS(FFTCOMP(x, /Complex)))(0:512), $
Title = 'Original', XStyle = 1

; Plot magnitude frequency response of combined
; signal (Figure 2-4 (a)).

h = FIRDESIGN(101, 0.3, 0.5, /Bandpass)

; Approximate a bandpass filter to isolate the first signal.

y = FIRFILT(h, x)

; Apply the filter to the signal.

PLOT, f, (ABS(FFTCOMP(y, /Complex)))(0:512), $
Title = 'Filtered', XStyle = 1

; Plot magnitude frequency response of filtered
; signal (Figure 2-4 (b)).

Figure 2-4 (a) Plot of the magnitude frequency response of the combined signal. (b) Plot of
the magnitude frequency response of the filtered signal.

See Also

FILTSTR, FIRFILT, IIRFILT

(a)

(b)
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FILTSTR Function
Constructs a valid filter data structure.

Usage

h = FILTSTR(b, a)

Input Parameters

b — A one-dimensional array or scalar value representing the numerator of the
filter.

a — A one-dimensional array or scalar value representing the denominator of the
filter.

Returned Value

h — A structure containing the filter.

Keywords

Name — A scalar string containing a name for the filter.

Discussion

For the numerator polynomial B(z) such that

B(z) = b0 + b1z–1 + b2z–2 + ...

and the dominator polynomial A(z) such that

A(z) = a0 + a1z–1 + a2z–2 + ...,

FILTSTR constructs a filter data structure H(z) such that

H(z) = B(z)/A(z).

Example

FILTSTR is used to produce a filter H(z) such that

.

h = FILTSTR([1, 0, 0, 1],[5, 1, 2])

See Also

PARSEFILT

H z( ) 1 z 3–+( )
5 z 1– 2z 2–+ +( )

--------------------------------------=
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FILTUP Function
Interpolation filter realization.

Usage

result = FILTUP([h,] x, m)

Input Parameters

h — (optional) An FIR filter. (Default: H(z) = 1)

x — A one-dimensional array containing a signal.

m — (scalar) The interpolation factor.

Returned Value

result — A one-dimensional array in double precision containing the filtered and
up-sampled input sequence.

Keywords

Full — Directs FILTDOWN to call FIRFILT with the Full keyword. If present and
nonzero, the entire result of the convolution of the input signal is returned, includ-
ing the edge effects which are normally cut off.

Discussion

FILTUP is designed for use only with FIR filters.

FILTUP realizes the multirate signal processing operation of up-sampling followed
by filtering (interpolation) for finite impulse response (FIR) filters, H(z) as shown
in Figure 2-5.

Figure 2-5 The FILTUP operation.

x(n)
M

y(n)
H(z)

z(n)
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The up-sampling shown in Figure 2-5 is given by

Example

In this example, a signal is created and then up-sampled to make a signal with four
times as many samples.

x = SIN(0.01*INDGEN(1000))

; Define a signal.

m = 4

; The interpolation factor of 4 means that three new samples
; will be inserted between each sample of the original signal.

h = FILTUPDESIGN(m, 2)

; Create an interpolation filter.

newx = FILTUP(h, x, m)

; Interpolate the data, using the interpolation filter. This new
; signal is approximately 4 times the length of the original signal.

See Also

FILTDOWN, FILTUPDESIGN, FIRFILT

y n( )
x n( ) n, 0 M 2M …,±,±,=

0 otherwise,
=
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FILTUPDESIGN Function
Designs a filter to be used with FILTUP.

Usage

result = FILTUPDESIGN(m, l [, alpha])

Input Parameters

m — (scalar) The interpolation factor. This should be the same value as that being
passed into FILTUP.

l — An integer used to determine the order of the filter. The filter order is given by
n = 2lm.

alpha — (optional) A scalar value used to scale the filter cutoff frequency. The nor-
malized cutoff frequency is given by alpha divided by m. (Default: alpha = 1)

Returned Value

result — A filter structure to be used with FILTUP.

Keywords

None.

Discussion

FILTUPDESIGN generates an optimal linear phase interpolator filter. The filter
generated has the property that every m-th point of the interpolated signal is equal
to a corresponding point in the original sequence.

The filter design technique implemented in FILTUPDESIGN is based on a paper
by Oetken, Parks, and Schussler, 1975.

Example

In this example, a signal is interpolated to get a signal four times the length of the
original.

m = 4

nx = 100
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freq = 0.9

x = SIN(!Pi*(freq)*FINDGEN(nx))

; Create a signal.

alpha = 1.0

l = 4

; This will cause the resulting filter to be of order 32.

h = FILTUPDESIGN(m, l, alpha)

; Create the interpolation filter.

result = FILTUP(h, x, m)

; Interpolate and filter in one step.

newx = FILTDOWN(result, m)

; To check the interpolation filter, decimate the interpolated, filtered
; data. The original data set is returned, to within a close epsilon.

PRINT, TOTAL(ABS(newx - x))

2.5938099e-14

; The difference between the original and the decimated interpolation
; filter data.

See Also

FILTUP

For Additional Information

Oetken, Parks, and Schussler, 1975.
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FIRDESIGN Function
Designs windowed, finite impulse response (FIR) digital filters including lowpass,
highpass, bandpass, and bandstop filters.

Usage

result = FIRDESIGN(w, f1 [, f2])

result = FIRDESIGN(m, f1 [, f2])

Input Parameters

w — A one-dimensional array containing a window sequence.

m — The filter length.

f1 — The frequency band edge for lowpass and highpass filters, or the lower fre-
quency band edge for bandpass and bandstop filters.

f2 — The upper frequency band edge for bandpass and bandstop filters.

Returned Value

result — A filter structure containing an FIR filter.

Keywords

Bandpass — If present and nonzero, designs a bandpass filter.

Bandstop — If present and nonzero, designs a bandstop filter.

Highpass — If present and nonzero, designs a highpass filter.

Lowpass — If present and nonzero, designs a lowpass filter.

Discussion

FIRDESIGN designs linear phase FIR filters to approximate the ideal lowpass,
highpass, bandpass, and bandstop filters shown in Figure 2-6.
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Figure 2-6 Ideal lowpass, highpass, bandpass, and bandstop filters can be approximated
with linear phase FIR filters designed with FIRDESIGN.

The basic approximation technique begins with one of the four ideal frequency
responses

for an appropriate frequency set B. The impulse response

, (θ = πf)

is then determined and multiplied by a window sequence w(k), giving the result

b(k) = w(k)hIdeal(k).

1.0

1.00 ff1
Lowpass

1.0

1.00 ff1
Highpass

1.0

1.00 ff1 f2
Bandpass

1.0

1.00 ff1 f2

Bandstop

H Ideal e jπf( )
1 f B∈,
0 f B∉,

=

Ideal k( )
1

2π
------ H Ideal e jθ( )e jkθ θd

π–

π

∫=
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The values of b(k) are returned in the filter structure as

.

If the first parameter in the calling sequence is an array of length m, an FIR filter
of length m is designed using this array as the window sequence. If the first param-
eter is an integer m, then by default an FIR filter of length m is designed using a
Hamming window.

Example

In this example, FIRDESIGN is used to approximate an ideal bandpass filter with
band edges 0.4 and 0.6 using a Blackman window.

w = FIRWIN(101, /Blackman)

; Compute a Blackman window sequence of length 101.

h = FIRDESIGN(w, 0.4, 0.6, /Bandpass)

; Approximate an ideal bandpass filter with band edges 0.4
; and 0.6 using a Blackman window.

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), Title = ’Magnitude’, XTitle = ’Frequency’

; Plot the magnitude of frequency response (Figure 2-7).

Figure 2-7 Plot of the magnitude of frequency response of an ideal bandpass filter.

H z( )
b0 b1z 1– b2z 2– ... bmz m–+ + + +

1
----------------------------------------------------------------------------=
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See Also

FIRFILT, FIRLS, FIRWIN

For Additional Information

Mitra and Kaiser, 1993, section 4.4.

Oppenheim and Schafer, 1989, section 7.4.

FIRFILT Function
Applies a finite impulse response (FIR) filter to a sequence.

Usage

result = FIRFILT(h, x)

Input Parameters

h — A filter structure containing an FIR filter.

x — A one-dimensional array containing the data signal to be filtered.

Returned Value

result — A one-dimensional array of the same length as x containing the filtered
data.

Keywords

Full — If present and nonzero, the entire result of the convolution of the signal
with the filter is returned.

NOTE Full is not valid if keyword Periodic is also set.

Offset — The result is shifted by the offset after the filter operation. (Default:
N_ELEMENTS(h.b)/2)

Periodic — If present and nonzero, x is treated as periodic.
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Discussion

For a given filter structure of the form

H(z) = B(z)/A(z)  with A(z) = 1,

FIRFILT computes the output sequence y(k) from the input sequence x(k) as

,

where bk are the coefficients of B(z).

Function CONVOL1D is used to carry out this computation. In order to reduce end
effects, a portion of the result of the convolution operation is removed from the
beginning and the end of the filtered signal before being returned. Use keyword
Offset to adjust how the elements are removed.

The length of result is the same as the input parameter x by default. To return the
entire result of the convolution operation, use keyword Full.

Example

This example illustrates a typical application of FIRFILT.

!P.Multi = [0, 1, 2]

t = FINDGEN(1024)

s1 = SIN(0.6*t)

s2 = SIN(1.2*t)

s3 = SIN(1.9*t)

; Generate three bandpass signals.

x = s1 + s2 + s3

; Combine the three signals.

f = FINDGEN(512)/511

; Generate abscissa values for the normalized frequency.

PLOT, f, (ABS(FFTCOMP(x, /Complex)))(0:512), $
Title = 'Original', XStyle = 1

; Plot the magnitude frequency response of the combined
; signal (Figure 2-8 (a)).

h = FIRDESIGN(101, 0.1, 0.3, /Bandpass)

; Approximate a bandpass filter to isolate the first signal.

y = FIRFILT(h, x)

y k( ) bk l– x k( )
l

∑=
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; Apply the filter to the signal.

PLOT, f, (ABS(FFTCOMP(y,/Complex)))(0:512), $
Title = 'Filtered', XStyle = 1

; Plot the magnitude frequency response of the filtered
; signal (Figure 2-8 (b)).

Figure 2-8 (a) Plot of the magnitude frequency response of the combined signal. (b) Plot of
the magnitude frequency response of the filtered signal.

See Also

FIRDESIGN, FIRLS, FIRWIN

For Additional Information

Oppenheim and Schafer, 1989.

Proakis and Manolakis, 1992.

(a)

(b)
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FIRLS Function
Approximates a deterministic frequency-domain or statistical time-domain, least-
squares, linear-phase finite impulse response (FIR) filter.

Usage

result = FIRLS(n, f, amplitude)

result = FIRLS(n, rss, rnn, /Wiener)

Input Parameters

n — The length of the desired FIR filter.

f — An array of frequency points between 0.0 and 1.0.

amplitude — The desired filter amplitude response at the frequency points speci-
fied by f. Amplitude values may be positive or negative.

rss — The autocorrelation sequence of the signal.

rnn — The autocorrelation sequence of the noise.

Returned Value

result — A filter structure containing the FIR filter approximation.

Keywords

Freqsample — If present and nonzero, approximates a linear phase FIR filter using
frequency domain least-squares techniques.

Interpfactor — An integer value specifying a factor by which the frequency sam-
ples are interpolated. The total number of interpolation points is given by
Interpfactor*n. (Default: 4)

Oddsymm — If present and nonzero, the FIR filter approximated using determin-
istic frequency domain techniques will have odd symmetry.

Wiener — If present and nonzero, an odd length, even symmetric, linear phase FIR
filter is approximated using statistical time domain least-squares (Wiener)
techniques.
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Discussion

When the keyword Freqsample is specified, FIRLS produces linear phase filters
that approximate a desired amplitude frequency response. Four types of linear
phase FIR filters can be approximated. They are:

Type 1 filters have odd length n = 2m + 1, even symmetry, and are given by

 .

Type 2 filters have even length n = 2m, even symmetry, and are given by

 .

Type 3 filters have odd length n = 2m + 1, odd symmetry, and are given by

 .

Type 4 filters have even length n = 2m, odd symmetry, and are given by

 .

The different types of filters are chosen by selecting the length n to be odd or even
and by setting the keyword Oddsymm.

FIRLS requires the specification of a selection of distinct frequency points between
0 and 1 in increasing order

f = [f0, f1, ... , fL]

and the desired frequency amplitude responses

amplitude = [G(z0), G(z1), ... , G(zL)]

at these frequency points where

.
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The algorithm used to design a Type 1 linear phase filter takes the specified fre-
quency and amplitude points and then forms a matrix A, with the k, n element given
by

,

and an array b with the elements of the desired frequency amplitude responses. The
equation Ax = b is then solved for the array x, which contains the filter coefficients
g(n), n = 0, 1, 2, ..., m. The other three types of filters are obtained in an identical

manner, except the elements of the matrix A are changed appropriately.

The solution to the matrix equation depends upon the number of frequency sample
points provided. If a filter of the length n has L frequency points specified and the
filter has m = (n – 1)/2 distinct coefficients for n odd (or m = n/2 for n even), then
the different solutions are enumerated as follows.

For the case when n is odd and the desired filter has even symmetry, FIRLS returns
the following solutions:

• If L – 1 > m, result is a least-squares FIR filter obtained using the specified fre-
quency and amplitude points.

• If L – 1 = m, result is the solution to the trigonometric polynomial interpolation
problem.

• If L – 1 < m, the frequency samples are linearly interpolated onto a uniform
grid of 4*n points, and result is a least-squares FIR filter based on the interpo-
lated frequency points.

For all other cases, FIRLS returns the following solutions:

• If L > m, result is a least-squares FIR filter obtained using the specified fre-
quency and amplitude points.

• If L = m, result is the solution to the trigonometric polynomial interpolation
problem.

• If L < m, the frequency samples are linearly interpolated onto a uniform grid of
4*n points, and result is a least-squares FIR filter based on the interpolated fre-
quency points.

• If Interpfactor is specified, the default solutions are overridden and the fre-
quency samples are linearly interpolated onto a uniform grid of Interpfactor*n
points. The least squares solution based on the interpolated frequency points
determines the filter coefficients.

jnπ f k e
jnπ f k–

+ 2 nπ f k( )cos=
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The coefficients of the four types of linear phase FIR filters are related to the coef-
ficients of the returned filter

as H(z) = z–nG(z), where m = n – 1.

Further details of the equations used in the solution can be found in Parks and Bur-
rus, 1987, sections 7.4 and 7.5.

NOTE FIR filters do not have an approximation problem equivalent to the time-
domain least squares problem for IIR filters (see the IIRLS Discussion section).
However, a time-domain statistical least-squares approximation problem does exist
for FIR filters which are solved by FIRLS.

When Wiener is specified, FIRLS designs an optimal Type 1 linear phase FIR filter
for estimating the signal s(k) from the noise corrupted observation

x(k) = s(k) + n(k).

It is assumed that the signal and noise are stationary, have zero mean and have the
known autocorrelation sequences

rss(k) = E[s(l)s(l + k)] , k = 0, ..., m

and

rnn(k) = E[n(l)n(l + k)] , k = 0, ..., m

where E is the mathematical expectation operator.

The coefficients of the FIR filter

are chosen to minimize the error

subject to the constraint that the number of coefficients is odd and the filter has lin-
ear phase.

H z( )
b0 b1z 1– b2z 2– ... bmz m–+ + + +

1
----------------------------------------------------------------------------=

H z( )
b0 b1z 1– b2z 2– ... bmz m–+ + + +

1
----------------------------------------------------------------------------=

E s k( ) b i( )u k i–( )
i

∑–
2
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The solution to this problem is obtained by solving the following linear equation

where the filter length n = 2L + 1 and the matrices Rss and
Rnn  are Toeplitz, defined by

.

NOTE When Wiener is specified, the two covariance sequences rss and rnn must
be positive definite.

NOTE When Freqsample is specified and an exact interpolation of the frequency
samples is required, then:

• When n is odd and Oddsymm is present, f cannot equal 0.0 or 1.0.
• When n is even and the desired filter has even symmetry (Oddsymm is not

present), f cannot equal 1.0.
• When n is even and Oddsymm is present, f cannot equal 0.0.

CAUTION Take care when choosing the frequency points and amplitude values.
If there are sharp transitions in the amplitude response, better solutions can be
obtained by specifying a transition region. FIRLS is purposefully set up to allow
you to specify the transition bands to suit your needs. This feature provides consid-
erable design flexibility.

Rss 2L( ) Rnn 2L( )+[ ]

b 0( )

b L( )

b 2L( )

Rss 2L( )

0

0

1

0

0

















=

L zeros

L zeros

Rxx m( )

rxx 0( ) rxx 1( ) rxx m( )
rxx 1( )

rxx 1( )
rxx m( ) rxx 1( ) rxx 0( )

=
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Example 1

In this example, a Type 1 FIR filter is designed to interpolate a given set of fre-
quency amplitude points.

h1 = FIRDESIGN(11,0.5,/Lowpass)

; Design an FIR filter.

PARSEFILT, h1, name, numer1, denom1

PM, numer1, Title = ’Original FIR Filter Coefficients’

Original FIR Filter Coefficients
0.0000000
-1.8611500e-18
-0.036657787
1.2756512e-17
0.28791400
0.50000000
0.28791400
1.2756512e-17
-0.036657787
-1.8611500e-18
0.0000000

f = FINDGEN(5)/5.0

desired_amplitude = ABS(FREQRESP_Z(h1, Infreq = f))

; Compute the frequency response of filter at several points where
; the amplitude response is known to be positive.

h2 = FIRLS(11, f, desired_amplitude, /Freqsample)

; Design an FIR filter to interpolate the desired amplitude values.

PARSEFILT, h2, name, numer2, denom2

PM, numer2, Title = ’Interpolating FIR Filter Coefficients’

Interpolating FIR Filter Coefficients
6.2218717e-10
0.0000000
-0.036657792
9.2945523e-11
0.28791401
0.50000002
0.28791401
9.2945523e-11
-0.036657792
0.0000000
6.2218717e-10
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Example 2

This example illustrates how to design a multiple bandpass filter using FIRLS and
specified transition bands.

f = [0, .18, .2, .22, .38, .4, .42, .58, .6, .62,$
.78, .8, .82, 1]

ampl = [0, 0, .5, 1, 1, .5, 0, 0, .5, 1, 1, .5, 0, 0]

; Specify desired frequency response with transition bands.

h = FIRLS(101, f, ampl, /Freqsample)

; Design a least-squares filter to approximate the desired response.

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), Title = ’Magnitude’, $
XTitle = ’Frequency’

; Plot the magnitude of the filter frequency response (Figure 2-9).

Figure 2-9 The magnitude plot of the multiple bandpass filter frequency response.

Example 3

This example illustrates the use of FIRLS with the keyword Wiener to design a sta-
tistical least-squares linear phase FIR filter.

rss = [1, .9, .9^2, .9^3, .9^4, .9^5, .9^6, .9^7, $
.9^8]
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; Covariance for first order autoregressive signal.

rnn = [.8, 0, 0, 0, 0, 0, 0, 0, 0]

; Covariance for white noise with variance 0.8.

h = FIRLS(9, rss, rnn, /Wiener)

; Compute the Wiener filter coefficients.

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), Title = ’Wiener Filter Magnitude’, $
XTitle = ’Frequency’

; Plot the magnitude of the frequency response (Figure 2-10).

Figure 2-10 Plot of the magnitude of the Wiener filter frequency response.

See Also

FIRDESIGN, FIRFILT, FIRWIN

For Additional Information

Parks and Burrus, 1987.

Roberts and Mullis, 1987.
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FIRWIN Function
Computes one of several different data windows: Blackman, Chebyshev, Ham-
ming, Hanning, Kaiser, rectangular, or triangular.

Usage

result = FIRWIN(n [, a])

Input Parameters

n — The length of the window sequence.

a — (optional) A scalar float parameter used only when computing either the Kai-
ser or Chebyshev windows.

Returned Value

result — A one-dimensional array containing the requested window.

Keywords

Blackman — If set, a Blackman window is returned.

Chebyshev — If set, a Chebyshev window is returned. If Chebyshev is set, input
parameter a (a is θ0 in the Chebyshev window equation) is also required.

Hamming — If set, a Hamming window is returned.

Hanning — If set, a Hanning window is returned.

Kaiser — If set, a Kaiser window is returned. If Kaiser is set, input parameter a
(a*π is α in the Kaiser window equation) is also required.

Rectangular — If set, a rectangular window is returned. This is also known as a
boxcar window.

Triangular — If set, a triangular window is returned.

Window_type — A scalar value (see the following table) used to specify a window
type. This keyword may be used in place of the particular window keywords
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.

Discussion

A listing of the applicable time domain equations is given below, where (w(n), 0 <
n < N – 1) for each of the windows.

Blackman window:

Chebyshev window:

for N = 0,

for N = 1,

for N > 1,

Window Window_type

1 Rectangular
2 Triangular
3 Hanning
4 Hamming
5 Kaiser
6 Blackman
7 Chebyshev

w n( ) 0.42 0.5
2π n N 1–

2
-------------–( )

N 1–
------------------------------cos– 0.08

4π n N 1–
2

-------------–( )
N 1–

------------------------------cos+=

w0 k( )
1, for k = 0

0, otherwise
=

w1 k( )

x0 1,– for k = 0

x0

2
-----, for |k| = 1

0, otherwise






=

wN k( ) 2 x0
2 1–( )wN 1– k( ) +=

x0
2( ) wN 1– k 1–( ) wN 1– k 1+( )+[ ] wN 2– k( )–
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where

and θ0 is the FIRWIN input parameter a.

Hamming window:

Hanning window:

Kaiser window:

,

where I0(x) is the zeroth order Bessel function of the first kind, and α is the FIR-
WIN input parameter a.

Rectangular (or boxcar) window:

w(n) = 1, for all n.

Triangular window:

, for all n.

Example

This example illustrates how to generate each of the different window types for a
window length of 31.

!P.Multi=[0,2,2]

x0
1
θ0 2⁄( )cos

--------------------------=

w n( ) 0.54 0.46
2π n N 1–

2
-------------–( )

N 1–
------------------------------cos–=

w n( ) 0.5 0.5
2π n N 1–

2
-------------–( )

N 1–
------------------------------cos–=

w n( )

I0 α 1 2
n

N 1–
2

-------------– 
 

N 1–
----------------------------

2

–
 
 
 
 

I0 α( )
----------------------------------------------------------=

w n( ) 1
2 n N 1–

2
-------------–

N 1–
------------------------–=
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n = 31

rect = FIRWIN(n, /Rectangular)

tri = FIRWIN(n, /Triangular)

hann = FIRWIN(n, /Hanning)

hamm = FIRWIN(n, /Hamming)

kaiser = FIRWIN(n, 0.5, /Kaiser)

black = FIRWIN(n, /Blackman)

cheby = FIRWIN(n, 0.15, /Chebyshev)

PLOT, rect, Linestyle = 2, XStyle = 1, $
YRange = [0, 1.05], $
Title = ’Rectangular and Triangular’

; See Figure 2-11 (a).

OPLOT, tri

; Plot the rectangular and triangular windows. See Figure 2-11 (a).

PLOT, hann, XStyle = 1, Linestyle = 2, $
YRange = [0, 1.05], $
Title = ’Hanning and Hamming’

; See Figure 2-11 (b).

OPLOT, hamm

; Plot the Hanning and Hamming windows. See Figure 2-11 (b).

PLOT, kaiser, XStyle = 1, Linestyle = 2, $
YRange = [0, 1.05],$
Title = ’Kaiser and Blackman’

; See Figure 2-11 (c).

OPLOT, black

; Plot the Kaiser and Blackman windows. See Figure 2-11 (c).

PLOT, cheby, XStyle = 1, YRange = [0, 1.05], $
Title = ’Chebyshev’

; Plot a Chebyshev window. See Figure 2-11 (d).
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Figure 2-11 Plots of FIRWIN window types: (a) rectangular and triangular windows; (b)
Hanning and Hamming windows; (c) Kaiser and Blackman windows; (d) Chebyshev window.

See Also

FIRDESIGN, FIRFILT, FIRLS

For Additional Information

Harris, 1978.

Roberts and Mullis, 1987.

(b)

(d)

(a)

(c)
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FMIN Function
Finds the minimum point of a smooth function of a single variable f (x) using func-
tion evaluations and, optionally, through both function evaluations and first
derivative evaluations.

Usage

result = FMIN(f, a, b [, grad])

Input Parameters

f — A scalar string specifying a user-supplied function to compute the value of the
function to be minimized. Parameter f accepts the following parameter and returns
the computed function value at this point:

x — The point at which the function is to be evaluated.

a — The lower endpoint of the interval in which the minimum point of f  is to be
located.

b — The upper endpoint of the interval in which the minimum point of f  is to be
located.

grad — A scalar string specifying a user-supplied function to compute the first
derivative of the function. Parameter grad accepts the following parameter and
returns the computed derivative at this point:

x — The point at which the derivative is to be evaluated.

Returned Value

result —The point at which a minimum value of f is found. If no value can be com-
puted, then NaN (not a number) is returned.

Keywords

Double — If present and nonzero, double precision is used.

Err_Abs — The required absolute accuracy in the final value of x. On a normal
return, there are points on either side of x within a distance Err_Abs at which f is
no less than f at x. Keyword Err_Abs should not be used if the optional parameter
grad is supplied. (Default: Err_Abs = 0.0001)
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Err_Rel — The required relative accuracy in the final value of x. This is the first
stopping criterion. On a normal return, the solution x is in an interval that contains
a local minimum and is less than or equal to max (1.0, | x |) * Err_Rel. When the
given Err_Rel is less than zero, ε1/2 is used as Err_Rel, where ε is the machine pre-
cision. Keyword Err_Rel should only be used if the optional parameter grad is
supplied. (Default: Err_Rel = ε1/2)

FValue — The function value at point x. Keyword FValue should only be used if
the optional parameter grad is supplied.

GValue — The derivative value at point x. Keyword GValue should only be used if
the optional parameter grad is supplied.

Max_Evals — The maximum number of function evaluations allowed. (Default:
Max_Evals = 1000)

Step — The order of magnitude estimate of the required change in x. Keyword Step
should not be used if the optional parameter grad is supplied. (Default: Step = 1.0)

Tol_Grad — The derivative tolerance used to decide if the current point is a local
minimum. This is the second stopping criterion. Parameter x is returned as a solu-
tion when grad is less than or equal to Tol_Grad. Keyword Tol_Grad should be
nonnegative; otherwise, zero is used. Keyword Tol_Grad should only be used if the
optional parameter grad is supplied. (Default: Tol_Grad = ε1/2, where ε is the
machine precision)

XGuess — The initial guess of the minimum point of f.
(Default: XGuess = (a + b) / 2)

Discussion

FMIN uses a safeguarded, quadratic interpolation method to find a minimum point
of a univariate function. Both the code and the underlying algorithm are based on
the subroutine ZXLSF written by M.J.D. Powell at the University of Cambridge.

The FMIN function finds the least value of a univariate function, f, which is speci-
fied by the function f. (Other required data are two points A and B that define an
interval for finding a minimum point from an initial estimate of the solution, x0,
where x0 = XGuess.) The algorithm begins the search by moving from x0 to x = x0
+ s, where s = Step is an estimate of the required change in x and may be positive
or negative. The first two function evaluations indicate the direction to the mini-
mum point, and the search strides out along this direction until a bracket on a
minimum point is found or until x reaches one of the endpoints a or b. During this
stage, the step length increases by a factor of between 2 and 9 per function evalua-
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tion. The factor depends on the position of the minimum point that is predicted by
quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, the three points are as
follows:

x1, x2, x3, with x1 < x2 < x3, f(x1) ≥ f(x2), and f(x2) ≥ f(x3)

The following rules should be considered when choosing the new x from these
three points:

• the estimate of the minimum point that is given by quadratic interpolation of
the three function values

• a tolerance parameter η, which depends on the closeness of | f | to a quadratic

• whether x2 is near the center of the range between x1 and x3 or is relatively
close to an end of this range.

In outline, the new value of x is as near as possible to the predicted minimum point,
subject to being at least ε from x2 and subject to being in the longer interval
between x1 and x2 or x2 and x3, when x2 is particularly close to x1 or x3.

The algorithm is intended to provide fast convergence when f has a positive and
continuous second derivative at the minimum and to avoid gross inefficiencies in
pathological cases, such as the following:

f (x) = x + 1.001 | x |

The algorithm can make ε large automatically in the pathological cases. In this
case, it is usual for a new value of x to be at the midpoint of the longer interval that
is adjacent to the least calculated function value. The midpoint strategy is used fre-
quently when changes to f are dominated by computer rounding errors, which
happens if you request an accuracy that is less than the square root of the machine
precision. In such cases, the subroutine claims to have achieved the required accu-
racy if it decides that there is a local minimum point within distance δ of x, where
δ = Err_Abs, even though the rounding errors in f may cause the existence of other
local minimum points nearby. This difficulty is inevitable in minimization routines
that use only function values, so high-precision arithmetic is recommended.

If parameter grad is supplied, then the FMIN function uses a descent method with
either the secant method or cubic interpolation to find a minimum point of a
univariate function. It starts with an initial guess and two endpoints. If any of the
three points is a local minimum point and has least function value, the function ter-
minates with a solution; otherwise, the point with least function value is used as the
starting point.
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From the starting point, for example xc, the function value fc = f (xc), the derivative
value gc = g (xc), and a new point xn, defined by
xn = xc – gc, are computed. The function fn = f (xn) and the derivative gn = g (xn) are
then evaluated. If either fn ≥ f c or gn has the opposite sign of gc, then a minimum
point exists between xc and xn, and an initial interval is obtained; otherwise, since
xc is kept as the point that has lowest function value, an interchange between xn and
xc is performed. The secant method is then used to get a new point:

Let xn ← xs. Repeat this process until an interval containing a minimum is found
or one of the following convergence criteria is satisfied:

Criterion 1: | xc – xn | ≤ εc

Criterion 2: | gc | ≤ εg

where εc = max {1.0, | xc |} * ε, ε is a relative error tolerance and εg is a gradient
tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a
new point. The function and derivative are then evaluated at that point; accordingly,
a smaller interval that contains a minimum point is chosen. A safeguarded method
is used to ensure that the interval be reduced by at least a fraction of the previous
interval. Another cubic interpolation is then performed, and this function is
repeated until one of the stopping criteria is met.

Example

In this example, the minimum point of f(x) = ex – 5x is found.

.RUN

; Define the function to be used.

FUNCTION f, x

RETURN, EXP(x) - 5 * x

END

% Compiled module: F.

xmin = FMIN(’f’, -100, 100)

; Call FMIN to compute the minimum.

PM, xmin

1.60943

x s xc gc–
gn gc–

xn xc–
----------------

 
 
 

=
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x = 10 * FINDGEN(100)/99 - 5

!P.Font = 0

PLOT, x, f(x), Title = ’!8f(x) = e!Ex!N-5x!3’, $
XTitle = ’x’, YTitle = ’f(x)’

; Plot results (Figure 2-12).

OPLOT, [xmin], [f(xmin)], Psym = 6

str = ’(’ + STRCOMPRESS(xmin) + ’,’ + $
STRCOMPRESS(f(xmin)) + ’)’

OPLOT, [xmin], [f(xmin)], Psym = 6

XYOUTS, -5, 80, ’Minimum point:!C’ + str, $
Charsize = 1.2

Figure 2-12 Plot showing the minimum point on a curve.

See Also

FMINV

f(x) = ex-5x
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FMINV Function
Minimizes a function f (x) of n variables using a quasi-Newton method.

Usage

result = FMINV(f, n)

Input Parameters

f — A scalar string specifying a user-supplied function to evaluate the function to
be minimized. The f function accepts the following parameter and returns the com-
puted function value at the point:

x — The point at which the function is evaluated.

n — The number of variables.

Returned Value

result — The minimum point x of the function. If no value can be computed, NaN
is returned.

Keywords

Double — If present and nonzero, double precision is used.

FScale — A scalar containing the function scaling. Keyword FScale is used
mainly in scaling the gradient. See keyword Tol_Grad for more detail. (Default:
FScale = 1.0)

FValue — The name of a variable into which the value of the function at the com-
puted solution is stored.

Grad — A scalar string specifying a user-supplied function to compute the gradi-
ent. This function accepts the following parameter and returns the computed
gradient at the point:

x — The point at which the gradient is evaluated.

Ihess — The Hessian initialization parameter. If Ihess is zero, the Hessian is ini-
tialized to the identity matrix; otherwise, it is initialized to a diagonal matrix
containing max ( f (t), fs ) * si on the diagonal, where
t = XGuess, fs = FScale, and s = XScale. (Default: Ihess = 0)
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Itmax — The maximum number of iterations. (Default: Itmax = 100)

Max_Evals — The maximum number of function evaluations. (Default:
Max_Evals = 400)

Max_Grad — The maximum number of gradient evaluations. (Default: Max_Grad
= 400)

Max_Step — The maximum allowable step size.
(Default: Max_Step = 1000max (ε1, ε2), where

s = XScale, and t = XGuess)

N_Digit — The number of good digits in the function. (Default: machine
dependent)

Tol_Grad — The scaled gradient tolerance. The i-th component of the scaled gra-
dient at x is calculated as

,where g = ∇f(x),

s = XScale, and fs = FScale.

(Default: Tol_Grad = ε1/2  (ε1/3 in double), where ε is the machine precision)

Tol_Rfcn — The relative function tolerance.
(Default: Tol_Rfcn = max (10-10, ε2/3), max (10-20, ε2/3) in double)

Tol_Step — The scaled step tolerance. The i-th component of the scaled step
between two points x and y is computed as

where s = XScale. (Default: Tol_Step = ε2/3)

ε1 siti( )2
i 1=
n∑=

ε2 s 2,=

gi max xi 1 si⁄,( )×
max f x( ) f s,( )

---------------------------------------------------

xi yi–

max xi 1 si⁄,( )
------------------------------------
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XGuess — An array with n components containing an initial guess of the computed
solution. (Default: XGuess (*) = 0)

XScale — An array with n components containing the scaling vector for the vari-
ables. Keyword XScale is used mainly in scaling the gradient and the distance
between two points. See keywords Tol_Grad and Tol_Step for more detail.
(Default: XScale (*) = 1.0)

Discussion

FMINV uses a quasi-Newton method to find the minimum of a function f (x) of n
variables. The problem is stated below.

Given a starting point xc, the search direction is computed according to the formula

d = –B–1gc

where B is a positive definite approximation of the Hessian and gc is the gradient
evaluated at xc.

A line search is then used to find a new point

xn = xc + λd , λ > 0

such that

f(xn) ≤ f(xc)αgTd

where α ∈(0, 0.5). Finally, the optimality condition ||g(x)|| ≤ ε is checked, where ε
is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

where s = xn – xc and y = gn – gc. Another search direction is then computed to begin
the next iteration. For more details, refer to Dennis and Schnabel (1983).

In this implementation, the first stopping criterion for FMINV occurs when the
norm of the gradient is less than the given gradient tolerance Tol_Grad. The second

min f x( )
x IRn∈

B B
BssT B

sT Bs
----------------– yyT

yT s
--------+←



FMINV Function  83

stopping criterion for FMINV occurs when the scaled distance between the last two
steps is less than the step tolerance Tol_Step.

Since by default, a finite-difference method is used to estimate the gradient for
some single-precision calculations, an inaccurate estimate of the gradient may
cause the algorithm to terminate at a noncritical point. In such cases, high-precision
arithmetic is recommended or keyword Grad is used to provide more accurate gra-
dient evaluation.

Example

In this example, the function
f(x) = 100 ( x2 – x1

2) 2 + ( 1 – x1)2 is minimized using FMINV.

.RUN

; Define the function.

FUNCTION f, x

xn = x

xn(0) = x(1) - x(0)^2

xn(1) = 1 - x(0)

RETURN, 100 * xn(0)^2 + xn(1)^2

END

% Compiled module: F.

xmin = FMINV("f", 2)

; Compute the minimum.

PM, xmin, Title = ’Solution:’

Solution:

0.999986

0.999971

PM, f(xmin), Title = ’Function value:’

Function value:

2.09543e-10

See Also

FMIN
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FREQRESP_S Function
Evaluates the frequency response of an analog filter for a given set of points on the
complex plane using Horner’s method.

Usage

result = FREQRESP_S(h, pts)

Input Parameters

h — An analog filter structure. This analog filter is expected to be a rational poly-
nomial in positive powers of s.

pts — One or more points. (Most likely a complex array; however, this parameter
may also be a scalar, a float, or an integer array.)

Returned Value

result — The value of filter h = H(s) at a given set of points s on the complex plane
(si = (xi + jyi)). The dimension of result is the same as the input parameter pts.

Keywords

None.

Discussion

FREQRESP_S uses Horner’s method to evaluate the numerator and denominator
polynomials at each point in the input array, and then divides the results. Floating
underflow and overflow cause the usual error messages.

The most common use of FREQRESP_S is to determine the frequency response of
an analog transfer function. This is accomplished by evaluating s = jω for values of
the real variable ω.

Example

This example computes the frequency response of a first order analog lowpass fil-
ter, H(s) = 0.5/(s + 0.5).

b = 0.5
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a = [0.5, 1]

h = FILTSTR(b, a)

omega = COMPLEX(FLTARR(100), 5.*INDGEN(100)/99.)

PLOT, ABS(omega), ABS(FREQRESP_S(h, omega)

Figure 2-13 Plot of the frequency response of first order analog lowpass filter.

See Also

FILTSTR, FREQRESP_Z
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FREQRESP_Z Function
Evaluates the frequency response of a digital filter on the unit circle.

Usage

result = FREQRESP_Z(h [, npoints])

Input Parameters

h — A digital filter structure.

npoints — (optional) The number of equally spaced points on the unit circle.
(Default: npoints = 512)

Returned Value

result — The value of the transfer function H(z) evaluated at a set of frequency
points

.

Keywords

Infreq — One or more real values indicating the normalized frequencies at which
the function is evaluated.

Outfreq — If set, returns an array of normalized frequencies at which the transfer
function was evaluated.

Slow — If present and nonzero, FREQRESP_Z evaluates the numerator and the
denominator at each point instead of performing the FFT.

NOTE If Slow is set, FREQRESP_Z will not perform the FFT, even when the FFT
would normally be used.

k e
jπ f k=
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Discussion

FREQRESP_Z evaluates the digital transfer function

H(z) = B(z)/A(z)

at a set of points

.

If an empty variable is used with the Outfreq keyword, as in the command

response = FREQRESP_Z(h, Outfreq = freq)

the values of the normalized frequencies will be passed back into the variable spec-
ified by the keyword Outfreq.

If Infreq is set to a scalar or array, those normalized frequencies fk are used to gen-
erate zk values. If Infreq isn’t set but npoints is, FREQRESP_Z generates that
number of evenly spaced points (z values) around the top half of the unit circle. If
neither keyword is used, the default value of 512 evenly spaced points is generated
(around the top half of the unit circle).

If Infreq or Slow is used, the generated values and the filter structure H, are passed
to FREQRESP_S and the results are returned.

Example

In this example, FREQRESP_Z is used to evaluate the frequency response of a
lowpass filter (Figure 2-14).

h = IIRDESIGN(10, .5, /Butter)

response = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(response)

k e
jπ f k=
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Figure 2-14 Plot of the frequency response of a lowpass filter.

See Also

FREQRESP_S

FREQTRANS Function
Performs frequency transformation of a lowpass prototype filter (in the normal fil-
ter structure) H(z) into another filter G(z) by replacing z with a stable all-pass filter
F(z).

Usage

result = FREQTRANS(h[, p])

Input Parameters

h — A digital filter structure. If you want to use one of the four predefined standard
transformations, this filter is assumed to be lowpass, by convention.
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p — (optional) An array of polynomial coefficients in z–1. This polynomial is
optional, and will be generated for you if you use one of the standard transforma-
tions: lowpass, highpass, bandpass, or bandstop.

Returned Value

result — A filter structure containing the transformed filter.

Keywords

Bandpass — [oldcutoff, lowcutoff, upcutoff] Where oldcutoff is the cutoff fre-
quency of the prototype lowpass filter; lowcutoff is the lower cutoff frequency; and
upcutoff is the upper cutoff frequency.

Bandstop — [oldcutoff, lowcutoff, upcutoff] Where oldcutoff is the cutoff fre-
quency of the prototype lowpass filter; lowcutoff is the lower cutoff frequency; and
upcutoff is the upper cutoff frequency.

Highpass — [oldcutoff, newcutoff] Where oldcutoff is the cutoff frequency of the
lowpass filter to be transformed; newcutoff is the cutoff frequency of the trans-
formed filter returned.

Lowpass — [oldcutoff, newcutoff] Where oldcutoff is the cutoff frequency of the
lowpass filter to be transformed; newcutoff is the cutoff frequency of the trans-
formed lowpass filter returned.

Newname — If the Newname parameter isn’t passed in, the new filter structure has
the same name as the old one.

Sigma — Set to 1 to return a lowpass filter and –1 for a highpass filter. (Default:
Sigma = 1)

Discussion

Keywords are used to specify one of four standard transformation types. Each of
the keyword parameters used to call a standard transform accepts an array, and each
array requires that a new cutoff frequency be specified. These new frequencies
should be normalized between 0 and 1.

Once this is done, a complementary polynomial to p(z) is created. The two polyno-
mials are related as

.p̃ z( ) z M– p z 1–( )=
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The transform itself is given by

,

where

,

is a stable all-pass filter and

p(z) = p0 + p1z–1 + p2z–2 + ....

The numerator polynomial p is a polynomial in z–1, such as the FREQTRANSDE-
SIGN function creates.

CAUTION Do not use a transformation order that is very high. The resulting high
order filter may be numerically unstable.

NOTE If polynomial p is obtained using FREQTRANSDESIGN, the lowpass pro-
totype filter H(z) must have a normalized frequency cutoff of 0.5.

NOTE The polynomial p must be stable and pass the Schur-Cohn test. Otherwise,
FREQTRANS will fail.

Example

This example generates a lowpass Butterworth filter and then moves the cutoff fre-
quency (Figure 2-15).

fp = 0.2049

n = 8

h = IIRDESIGN(n, fp, /Butter)

; Define an eighth-order Butterworth filter.

newfp = 0.4

result = FREQTRANS(h, Lowpass = [fp, newfp])

; Now, move the cutoff frequency from 0.2049 to 0.4.

G z( ) H σF z( )( ) b z( )
a z( )
---------= =

F z( ) p z( )
p̃ z( )
---------=
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resp = ABS(FREQRESP_Z(result, Outfreq = freq))

newresp = ABS(FREQRESP_Z(h, Outfreq = freq))

PLOT, freq, resp

; Plot the original lowpass Butterworth filter frequency response (Figure 2-15).

OPLOT, freq, newresp

; Plot the frequency response with the shifted cutoff frequency (Figure 2-15).

REFLINES, [fp, newfp]

Figure 2-15 A lowpass Butterworth filter with a shifted cutoff frequency.

See Also

FREQTRANSDESIGN, IIRDESIGN

For Additional Information

Parks and Burrus, 1987.

Proakis and Manolakis, 1992.

Roberts and Mullis, 1987.
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FREQTRANSDESIGN Function
Creates the numerator polynomial of a stable all-pass filter. The resulting filter is
used to perform a frequency transformation of a lowpass prototype filter into a mul-
tiple bandpass filter.

Usage

result = FREQTRANSDESIGN(phi)

Input Parameters

phi— An array of normalized cutoff frequencies (between 0 and 1).

Returned Value

result — An array of polynomial coefficients.

Keywords

Lowstop — If present and nonzero, the transformation creates a lowstop filter. The
filter passed into FREQTRANS must be a highpass filter.

Discussion

NOTE The transformation generated by FREQTRANSDESIGN must be applied
to a lowpass filter with a cutoff frequency of 0.5 (normalized) or the transformation
won’t work correctly.

CAUTION Using this function to generate polynomials of order 13 or greater is
not advised.

The result polynomial is passed to FREQTRANS along with a lowpass digital filter
to create a multiple bandpass filter.

The algorithm used in FREQTRANSDESIGN comes from Franchitti, 1985.
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Example

This example creates a lowpass filter and then transforms that into a multiple band-
pass filter.

h = IIRDESIGN(15, 0.5, /Butter)

; Defines an order-15 Butterworth filter with normalized cutoff
; frequency of 0.5.

phi = [0.1, 0.4, 0.6, 0.7, 0.8]

; Defines the new cutoff frequencies.

!X.Ticks = 7

!X.Style = 1

!P.Charsize = 1.5

!Y.Range = [0,1.2]

!X.Tickv = [phi(0), phi(1), 0.5, phi(2), phi(3), $
phi(4), 1.0]

; Set up some plotting parameters.

p = FREQTRANSDESIGN(phi)

; Construct the frequency transformation polynomial.

result = ABS(FREQRESP_Z(FREQTRANS(h, p), Outfreq = f))

; Transform the filter and compute the frequency response in one step.

ticks = ['!4u!6!l1', '!4u!6!l2', '0.5', $
'!4u!6!l3', '!4u!6!l4', '!4u!6!l5', '1.0']

!X.Tickname = ticks

PLOT, f, result, Thick = 2

; Plot the frequency response of the transformed filter (see Figure 2-16).

OPLOT, f, ABS(FREQRESP_Z(h)), Thick = 2, Linestyle = 1

; Plot the response of the original filter (Figure 2-16).
REFLINES, phi

; Plot some lines at the cutoff frequencies (Figure 2-16).
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Figure 2-16 A plot of the original lowpass Butterworth filter, and the transformed multiple
bandpass filter. Reference lines indicate the cutoff frequencies used in the FREQTRANS-
DESIGN multiple bandpass example.

See Also

FREQTRANS

For Additional Information

Franchitti, 1985.

Roberts and Mullis, 1987, pp. 202 – 207.
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2
Reference

HILBERT Function
Constructs a Hilbert transformation.

Usage

result = HILBERT(x [, d])

Input Parameters

x — The array to be transformed. Can be of either floating-point or complex data
type, and can contain any number of elements.

d — (optional) A flag to indicate the direction of rotation:

+1  Shifts the array +90 degrees.

–1  Shifts the array –90 degrees.

Returned Value

result — A complex data type, the value of which is the Hilbert transform of x,
having the same dimensions as x.

Keywords

None.

Discussion

A Hilbert transform is a series of numbers in which all periodic components have
been phase-shifted by 90 degrees. Angle shifting is accomplished by multiplying
or dividing by the complex number
j = (0.000, 1.000).

A Hilbert series has the interesting property that the correlation between it and its
own Hilbert transform is mathematically zero.

NOTE The HILBERT function creates a Hilbert matrix by computing the fast Fou-
rier transform of the data with the PV-WAVE FFT function and shifting the first
half of the transform products by +90 degrees and the second half by –90 degrees.
The constant elements of the transform are not changed.
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The shifted array is then submitted to the PV-WAVE FFT function for the transfor-
mation back to the time-domain. Before it is returned, the output is divided by the
number of elements in the array to correct for the multiplication effect characteris-
tic of the FFT algorithm.

Example
!P.multi = [0, 1, 3]

a = FINDGEN(1000)

sine_wave = SIN(a/(MAX(a)/(2 * !Pi)))

; Create a sine wave.

PLOT, sine_wave

; Plot the sine wave (Figure 2-17 (a)).

OPLOT, HILBERT(sine_wave, -1)

; Plot the sine wave phase-shifted to the right by 90 degrees
; (Figure 2-17 (a)).

rand = RANDOMN(seed, 1000) * 0.05

; Create an array of random numbers to mimic a noisy signal.

PLOT, rand

; Plot the random numbers (Figure 2-17 (b)).

sandwich = [sine_wave, rand, sine_wave]

; Sandwich the random data between two sine waves.

PLOT, sandwich, XStyle=1

; Plot the two sine waves with the random noise in the middle,
; thereby turning them into a single signal (Figure 2-17 (c)).

OPLOT, HILBERT(sandwich, -1)

; Plot the sandwiched wave forms. Note that the sine waves are
; phase-shifted to the right by 90 degrees, while the noise data
; has not shifted at all, but rather has been distorted vertically
; (its amplitude) by the effect of the two adjacent phase-shifted sine
; waves. This is because the sine waves and the noise data were set
; up to be a single signal (Figure 2-17 (c)).
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Figure 2-17 (a) Sine wave and 90-degree phase shifted sine wave. (b) Random noise plot.
(c) Sandwiched sine waves with random noise and the HILBERT transform of that signal.

See Also

In the PV-WAVE Reference:

FFT

(a)

(b)

(c)



98  Chapter 2: Reference PV-WAVE:Signal Processing User’s Guide

IIRDESIGN Function
Designs Butterworth, Chebyshev Type I, Chebyshev Type II, and elliptic lowpass
infinite impulse response (IIR) digital filters.

Usage

result = IIRDESIGN(n, fp, /Butter)

result = IIRDESIGN(n, fp, rp, /Cheby1)

result = IIRDESIGN(n, fs, rs, /Cheby2)

result = IIRDESIGN(n, fp, rp, rs, /Ellip)

Input Parameters

n — The filter order.

fp — The pass-band frequency edge.

fs — The stop-band frequency edge.

rp — The pass-band ripple.

rs — The stop-band ripple.

Returned Value

result — A filter structure containing the coefficients of the IIR filter.

Keywords

Butter — If present and nonzero, designs a Butterworth filter.

Cheby1 — If present and nonzero, designs a Chebyshev Type I filter.

Cheby2 — If present and nonzero, designs a Chebyshev Type II filter.

Ellip — If present and nonzero, designs an elliptic filter.

Discussion

This function designs Butterworth, Chebyshev types I and II, and elliptic IIR digital
lowpass filters. The different filter approximations are illustrated in Figure 2-18.
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Figure 2-18 Filter approximations for Butterworth, Chebyshev types I and II, and elliptic IIR
digital lowpass filters.

The Butterworth filter is maximally flat in the pass and stop bands. This filter is
parameterized by its order (n) and pass-band frequency edge (fp) defined by

.

The Chebyshev Type I filter has equal ripple in the pass band. This filter is
parameterized by its order (n), pass-band ripple (rp), and pass-band frequency edge
(fp) defined by

.

1

2
-------

1.0

f p

1 r p–

f p

f p f p

rs

1 r p–

rs

H e
jπ f p( ) 1

2
-------=

H e
jπ f p( ) 1 r p–=
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The Chebyshev Type II filter has equal ripple in the stop band. This filter is
parameterized by its order (n), the stop-band ripple (rs), stop-band frequency edge
(fs) defined by

.

The elliptic filter has equal ripple in both the pass band and the stop band. This filter
is parameterized by its order (n), the pass-band ripple (rp), and stop-band ripple (rs),
the pass-band frequency edge (fp) defined by

.

The four filter types are obtained by first designing an analog lowpass prototype
filter using the techniques discussed in Parks and Burrus (1987) and then using the
bilinear transform to obtain an digital lowpass prototype filter.

The lowpass filters obtained using IIRDESIGN can be transformed into a highpass,
bandpass, or bandstop filter using the function FREQTRANS, if desired.

The minimum filter order required to meet a set of specifications for the filters
designed by IIRDESIGN may be determined by IIRORDER.

Example 1

In this example, a Butterworth filter is designed and the resulting frequency
response is plotted (Figure 2-19).

n = 7

fp = 0.5

h = IIRDESIGN(n, fp, /Butter)

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), YRange = [0, 1.2], $
Title = ’Butterworth Magnitude’, $
XTitle = ’Frequency’

OPLOT, [0, fp], SQRT(0.5)*[1, 1], Linestyle = 2

OPLOT, [fp, fp], SQRT(0.5)*[1, 0], Linestyle = 2

H e
jπ f s( ) rs=

H e
jπ f p( ) 1 r p–=
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Figure 2-19 Frequency response from a seventh-order Butterworth filter.

Example 2

A Chebyshev Type I filter is designed and the resulting frequency response is
plotted in Figure 2-20.

n = 7

fp = 0.5

rp = .2

h = IIRDESIGN(n, fp, rp, /Cheby1)

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), $
Title = ’Chebyshev Type I Magnitude’, $
XTitle = ’Frequency’

OPLOT, [0, fp], (1 - rp)*[1, 1], Linestyle = 2

OPLOT, [fp, fp], (1 - rp)*[1, 0], Linestyle = 2
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Figure 2-20 Frequency response from a seventh-order Chebyshev type I filter.

Example 3

A Chebyshev Type II filter, also known as an inverse Chebyshev filter is designed
in this example. The frequency response is plotted in Figure 2-21.

n = 7

fs = 0.5

rs = 0.2

h = IIRDESIGN(n, fs, rs, /Cheby2)

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), YRange = [0, 1.2], $
Title = ’Chebyshev Type II Magnitude’, $
XTitle = ’Frequency’

OPLOT, [fs, 1], rs*[1, 1], Linestyle = 2

OPLOT, [fs, fs], rs*[1, 0], Linestyle = 2
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Figure 2-21 Frequency response from a seventh-order Chebyshev type II filter.

Example 4

In this example, an elliptic filter is designed and the frequency response is plotted
(Figure 2-22).

n = 4

fp = .5

rp = .05

rs = .05

h = IIRDESIGN(n, fp, rp, rs, /Ellip)

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), Title = ’Elliptic Magnitude’, XTitle = ’Frequency’

YRange = [0., 1.2], YStyle = 1

OPLOT, [0, fp], [1-rp, 1-rp], Linestyle = 2

OPLOT, [fp, fp], [0, 1-rp], Linestyle = 2

OPLOT, [fp, 1], [rs, rs], Linestyle = 2
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Figure 2-22 Frequency response from a fourth-order elliptic filter.

See Also

FREQTRANS, FREQTRANSDESIGN, IIRORDER

For Additional Information

Parks and Burrus, 1987.
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IIRFILT Function
Applies an infinite impulse response (IIR) filter to a data sequence.

Usage

result = IIRFILT(h, x)

Input Parameters

h — A digital filter structure containing the filter coefficients.

x — A one-dimensional array containing the data to be filtered.

Returned Value

result — A one-dimensional array containing the filtered data. The returned array
is the same dimension as the input array x.

Keywords

Forward_back — If present and nonzero, the data sequence is forward-backward
filtered.

Discussion

IIRFILT realizes the digital filter

using the transposed direct form II filter structure shown in Figure 2-23.

H z( ) B z( )
A z( )
----------

b0 b1z 1– … bMz M–+ + +

1 a1z 1– … aNz N–+ + +
-----------------------------------------------------------= =
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Figure 2-23 Signal flow graph for IIR filter realization.

The difference equations associated with this filter structure are given by

y(n) = w1(n – 1) + b0x(n)

wk(n) = wk+1(n – 1) – aky(n) + bkx(n) , k = 1, 2, ..., max{M, N}

wN(n) = bNx(n) – aNy(n)

When the keyword Forward_back is specified, this function filters the data
sequence in both the forward and backward directions. Forward-backward filtering
is equivalent to applying the filter

.

+

+

z–1

z–1

z–1

x(n) b0 y(n)

b1

bN – 1

bN

w1(n)

w2(n)

wN(n)
– aN

– aN – 1

– a1+

+

H z( ) B z( )B z 1–( )
A z( )A z 1–( )
-------------------------=
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The algorithm used to accomplish the forward-backward filter operation first
solves the equation

for C(z) using the Jury algorithm discussed in Demeure and Mullis (1990). The sig-
nal is then filtered according to the signal flow diagram shown in Figure 2-24.

Figure 2-24 Signal flow diagram for forward-backward filtering.

The “reverse” operation shown in the figure takes a sequence

x(k), k = 0, 1, ..., L

and replaces it with the sequence

x(L – k), k = 0, 1, ..., L .

Forward-backward filtering is typically used to obtain zero-phase response from an
IIR filter.

NOTE Each of these methods assumes that the constant term in the denominator
polynomial of the transfer function is unity. To satisfy that assumption, both the
numerator and denominator polynomials are scaled by a0.

Example

In this example, IIRFILT is used to perform causal and anti-causal filtering.

!P.multi = [0, 1, 2]

x = ((INDGEN(1024)+64) MOD 256) GT 128

B z( )B z 1–( )
A z( )A z 1–( )
------------------------- C z( )

A z( )
---------- C z 1–( )

A z 1–( )
---------------+=

x(k)

reverse reverse

+
y(k)

C z( )
A z( )
----------

C z( )
A z( )
----------
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; Generate a square wave.

h = IIRDESIGN(5, 0.25, 0.01, 0.01, /Ellip)

; Design an elliptic lowpass filter.

PLOT, IIRFILT(h, x), Title = ’Causal Filtering’, XTitle = ’Time’

; Causal filtering of the square wave (Figure 2-25 (a)).

PLOT, IIRFILT(h, x, /Forward_back), $
Title = ’Forward-Backward Filtering’, $
XTitle = ’Time’

; Anti-causal (forward-backward) filtering of the square wave; (Figure 2-25 (b)).

Figure 2-25 (a) Causal and (b) anti-causal filtering of a square wave accomplished using
the IIRFILT function.

See Also

FILTER

For Additional Information

Proakis and Manolakis, 1992.

Demeure and Mullis, 1990.

(a)

(b)
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IIRLS Function
Approximates time-domain or frequency-domain least squares infinite impulse
response (IIR) digital filters.

Usage

result = IIRLS(m, n, h[, l])

Input Parameters

m — The order of the filter numerator polynomial.

n — The order of the filter denominator polynomial.

h — An array containing samples of the impulse response or frequency response.

l — (optional) The total number of frequency response samples used in the design.
This parameter is required if the Freqsample keyword is specified.

Returned Value

result — A filter structure containing the filter approximation.

Keywords

Freqsample — If present and nonzero, a frequency-domain least squares method
is used.

NOTE The optional input parameter l must be used when Freqsample is specified.

Prony — If present and nonzero, Prony’s time-domain least squares method is
used.

Discussion

IIRLS determines the numerator and denominator coefficients of an IIR filter

H z( ) B z( )
A z( )
----------

b0 b1z 1– … bMz M–+ + +

1 a1z 1– … aNz N–+ + +
----------------------------------------------------------- h n( )z n–

n 0=

∞

∑= = =
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to approximate a given set of impulse response samples

h(k), k = 0, 1, ..., K ;

or uniform set of frequency response samples

,

where the frequency samples are selected as

.

If Prony is specified, Prony’s method for time-domain design of FIR filters is used.
This method is based on noting that the rational transfer function may be rewritten

B(z) = H(z)A(z) .

Using the first K + 1 terms of the impulse response h(n), the inverse z-transform of
this equation can be written

Given K ≥ M + N impulse response samples, Prony’s method selects the filter coef-
ficients to minimize the least-squares equation error of the above matrix equation.
If K = M + N and the impulse response samples are consistent with a rational trans-
fer function, this method will produce a filter with an impulse response that
matches the K-given impulse response samples.

If Freqsample is specified, the frequency-domain least squares method is used.
This method is based on noting that if we have L + 1 uniform samples of the fre-
quency response, the sampled rational transfer function may be rewritten

Bk = HkAk .

Hk H e
jπ f k( )=

f k
k

L 1+
------------ k = 0, 1, ..., L,=

b0

b1

b2

bM

0

0

h 0( ) 0 0 0

h 1( ) h 0( ) 0

h 2( ) h 1( ) h 0( )

h M( )

h K( ) h K N–( )

1

a1

a2

aN

=
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In this relationship, Hk is the frequency response sample defined previously,

Bk = DFT{bn}

and

Ak = DFT{an} ,

and both discrete Fourier transforms (DFT) are taken over L points. The inverse
DFT of the above equation can be written

where matrix elements hn are defined as

Given L ≥ M + N uniform frequency response samples, IIRLS selects the filter coef-
ficients to minimize the least squares equation error of the matrix equation. If L =
M + N and the frequency response samples are consistent with a rational transfer
function, this method will produce a filter with frequency response that interpolates
the L-given frequency response samples.

IIRLS only produces filters with real coefficients. This requires that the sequence
hn be real. The values of Hk are therefore forced to satisfy the standard symmetry
properties of the DFT to ensure that hn is real. If the total number of frequency sam-
ples L used in technique is odd, the number of frequency response samples Hk
provided by the user must be greater than (L + 1)/2. If L is even, the number of sam-
ples must be greater than or equal to (L + 2)/2. Because of the forced symmetry,

b0

b1

b2

bM

0

0

h0 hL hL 1– h2 h1

h1 h0 hL h2

h2 h1 h0

hL h0

1

a1

a2

aN

0

0

=

Hk hn
inverse DFT
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only the first (L + 1)/2 (for L odd) or (L + 2)/2 (for L even) elements of Hk are used
in the routine. Any additional samples of Hk are ignored.

NOTE If the impulse or frequency response samples are consistent with an unsta-
ble filter, then an unstable filter will be returned by IIRLS. It is recommended that
you verify the stability of the returned filter by applying SCHURCOHN to the
denominator coefficients. It is also possible to stabilize an unstable filter without
affecting its magnitude response by using the P_STAB function.

Example 1

This example illustrates how IIRLS with the keyword Prony can be used to design
a filter that matches a given set of L + 1 impulse response samples.

l = 6

h = IIRDESIGN(l/2, 0.5, /Butter)

desired_impul = IMPRESP(h, l+1)

; Design a filter and compute a set of impulse response samples.

PARSEFILT, h, name, numer, denom

PM, numer, Title = $
’Original Filter Numerator Coefficients’

Original Filter Numerator Coefficients
0.16666667
0.50000000
0.50000000
0.16666667

PM, denom, Title = $
’Original Filter Denominator Coefficients’

Original Filter Denominator Coefficients
1.0000000
0.0000000
0.3333333
0.0000000

hls = IIRLS(l/2, l/2, desired_impul, /Prony)

; Compute filter coefficients that match the desired impulse
; response samples.

PARSEFILT, hls, name, numerls, denomls

PM, numerls, Title = $
’Least Squares Filter Numerator Coefficients’

Least Squares Filter Numerator Coefficients
0.16666667
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0.50000000
0.50000000
0.16666667

PM, denomls, $
Title = ’Least Squares Filter ’ + $
’Denominator Coefficients’

Least Squares Filter Denominator Coefficients
1.0000000
0.0000000
0.33333333
2.0744776e-17

Example 2

This example illustrates how IIRLS with the keyword Freqsample can be used to
design a filter that interpolates a given set of L frequency response samples.

l = 8

h = IIRDESIGN(l/2, 0.5, /Butter)

f= -2*DINDGEN(l)/DOUBLE(l+1)

desired_freqsamples = FREQRESP_Z(h, Infreq = f)

; Design a filter and compute a set of frequency response samples.

PARSEFILT, h, name, numer, denom

PM, numer, Title = $
’Original Filter Numerator Coefficients’

Original Filter Numerator Coefficients
0.093980851
0.37592341
0.56388511
0.37592341
0.093980851

PM, denom, Title = $
’Original Filter Denominator Coefficients’

Original Filter Denominator Coefficients
1.0000000
0.0000000
0.48602882
0.0000000
0.017664801

hls = IIRLS(l/2, l/2, desired_freqsamples, l,$
/Freqsample)

; Compute filter coefficients that match the desired frequency
; response samples.
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PARSEFILT, hls, name, numerls, denomls

PM, numerls, Title = $
’Least Squares Filter Numerator Coefficients’

Least Squares Filter Numerator Coefficients
0.093980844
0.37592330
0.56388476
0.37592300
0.093980683

PM, denomls, Title = $
’Least Squares Filter Denominator Coefficients’

Least Squares Filter Denominator Coefficients
1.0000000
-1.0287107e-06
0.48602936
-6.7503742e-07
0.017664935

See Also

FIRLS, P_STAB, SCHURCOHN

For Additional Information

Parks and Burrus, 1987, sections 7.4 and 7.5.

IIRORDER Function
Determines the minimum filter order required for a Butterworth, Chebyshev Type
I, Chebyshev Type II, or elliptic infinite impulse response (IIR) digital lowpass fil-
ter to satisfy a given set of pass-band frequency edge, stop-band frequency edge,
pass-band ripple, and stop-band ripple constraints.

Usage

result = IIRORDER(fp, fs, rp, rs)

Input Parameters

fp — The pass-band frequency edge

fs — The stop-band frequency edge
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rp — The pass-band ripple

rs — The stop-band ripple

NOTE In addition to these parameters, exactly one keyword must be set to select
the filter type for which the filter order will be computed.

Returned Value

result — A scalar long containing the computed filter order.

Keywords

Butter — If present and nonzero, computes the filter order for a Butterworth filter.

Cheby1 — If present and nonzero, computes the filter order for a Chebyshev Type
I filter.

Cheby2 — If present and nonzero, computes the filter order for a Chebyshev Type
II filter.

Ellip — If present and nonzero, computes the filter order for an elliptic filter.

Discussion

The pass-band frequency edge (fp), stop-band frequency edge (fs), pass-band ripple
(rp), and stop-band ripple (rs) are defined as shown in Figure 2-18 on page 99 and
are discussed in the Discussion section of IIRDESIGN.

The equations which relate the frequency cutoff values, pass-band ripple, stop-
band ripple, and filter order (n) are discussed in Rabiner and Gold, 1975, p. 241.

Example

This example illustrates how IIRORDER may be used to find the minimum
required lowpass filter order.

fp = 0.5

fs = 0.55

rp = 0.1

rs = 0.1

; Select frequency band edges and ripple parameters.

PM, IIRORDER(fp, fs, rp, rs, /Butter), $
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Title = ’Butterworth Order’

Butterworth Order
20

PM, IIRORDER(fp, fs, rp, rs, /Cheby1), $
Title = ’Chebyshev Type I Order’

Chebyshev Type I Order
7

PM, IIRORDER(fp, fs, rp, rs, /Cheby2), $
Title = ’Chebyshev Type II Order’

Chebyshev Type II Order
7

PM, IIRORDER(fp, fs, rp, rs, /Ellip), $
Title = ’Elliptic Order’

Elliptic Order
4

See Also

IIRDESIGN

For Additional Information

Parks and Burrus 1987, Chapter 7.

Rabiner and Gold 1975, p. 241.

IMPRESP Function
Computes the impulse response of a digital filter.

Usage

result = IMPRESP(h, n)

Input Parameters

h — A valid filter structure.

n — The total number of samples to generate.
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Returned Value

result — A one-dimensional array containing the first n values of the impulse
response.

Keywords

None.

Discussion

IMPRESP uses the IIRFILT function with the input sequence
x(n), defined by

,

to compute the impulse response of a digital filter.

Example

In this example, the impulse response of a filter structure

,

is computed using IMPRESP, and the results along with the analytic solution are
printed out.

a = -0.25

h = FILTSTR([1], [1, a])

ir = IMPRESP(h, 10)

; Results should be ak for k = 0, 1, 2, ... when H(z) = 1/(1 + az-1).

PM, [[ir], [.25^FINDGEN(10)]], $
Title = 'Computed         Actual'

Computed         Actual
1.0000000       1.0000000
0.25000000      0.25000000
0.062500000     0.062500000
0.015625000     0.015625000
0.0039062500    0.0039062500

x n( )
1 ,  n = 0

0 ,  otherwise
=

H z( ) 1
1 az 1–+( )

------------------------=
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0.00097656250   0.00097656250
0.00024414062   0.00024414062
6.1035156e-05   6.1035156e-05
1.5258789e-05   1.5258789e-05
3.8146973e-06   3.8146973e-06

See Also

IIRFILT

INTFCN Function
Integrates a user-supplied function.

Usage

result = INTFCN(f, a, b)

Input Parameters

f — A scalar string specifying the name of the function to be integrated. The func-
tion f accepts one scalar parameter and returns a single scalar of the same type.

a — A scalar expression specifying the lower limit of integration.

b — A scalar expression specifying the upper limit of integration.

Returned Value

result — An estimate of the desired integral. If no value can be computed, NaN (not
a number) is returned.

Global Keywords

The following seven keywords can be used in any combination with each method
of integration except the non-adaptive method, which is triggered by the keyword
Smooth. Because of this, these global keywords are documented here only and
referred to within the Method Keywords subsections of the Optional Method of
Integrations section of this routine.

Double — If present and nonzero, double precision is used.
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Err_Abs — The absolute accuracy desired. (Default: Err_Abs = ε1/2, where ε is the
machine precision)

Err_Est — An estimate of the absolute value of the error.

Err_Rel — The relative accuracy desired. (Default: Err_Rel = ε1/2, where ε is the
machine precision)

Max_Subinter — The number of subintervals allowed.
(Default: Max_Subinter = 500)

N_Evals — A named variable into which the number of evaluations of f is stored.

N_Subinter — A named variable into which the number of subintervals generated
is stored.

Discussion

In the default case, the three input parameters f, a and b are required. Additional
methods of integration are also possible using INTFCN. If another method of inte-
gration is desired, a combination of these parameters, along with additional
parameters and keywords must be specified. Descriptions of the additional param-
eters and keywords to use for specific methods of integration are discussed in the
following sections.

Optional Methods of Integration

Using different combinations of keywords and parameters, one of several types of
integration can be performed including:

Integration of functions based on Gauss-Kronrod rules

Integration of functions with singular points given

Integration of functions with algebraic-logarithmic singularities

Integration of functions over an infinite or semi-infinite interval

Integration of functions containing a sine or cosine factor

Computation of Fourier sine and cosine transforms

Integrals in the Cauchy principle value sense

Integration of smooth functions using a non-adaptive rule

Computation of two-dimensional iterated integrals
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By specifying different sets of parameters and/or keywords, a number of different
types of integration can be performed. Internally, the method to be used is deter-
mined by examining the combination of parameters and/or keywords used in the
call to INTFCN. To specify a specific method of integration, refer to the appropri-
ate discussion.

Integration of Functions Based on Gauss-Kronrod Rules

This method integrates functions using a globally adaptive scheme based on Gauss-
Kronrod rules shown in the table that follows.

Synopsis

Triggered by the use of keyword Rule.

result = INTFCN(f, a, b, Rule = rule)

Returned Value

result — The value of

.

If no value can be computed, NaN is returned.

Keywords

In addition to the keywords listed for this function, the following keyword is also
available:

Rule — If specified, the integral is computed using a globally adaptive scheme
based on Gauss-Kronrod rules
Choice of Quadrature Rule

Rule Gauss-Kronrod Rule

1 7-15 points

2 10-21 points

3 15-31 points

4 20-41 points

5 25-51 points

f x( ) xd
a

b∫



INTFCN Function  121

Integration of Functions with Singular Points Given

This method integrates functions with given singularity points.

Synopsis

Requires the use of keyword Sing_Pts.

result = INTFCN(f, a, b, Sing_Pts = points)

Returned Value

result — The value of

.

If no value can be computed, NaN is returned.

Keywords

In addition to the keywords listed in the Global Keywords section, the following
keyword is available:

Sing_Pts — If present, specifies the abscissas of the singularities. These values
should be interior to the interval [a, b].

Integration of Functions with Algebraic-logarithmic
Singularities

This method integrates functions with algebraic-logarithmic singularities.

Input Parameters

alpha — The strength of the singularity at a. Must be greater than –1.

beta — The strength of the singularity at b. Must be greater than –1.

6 30-61 points

Choice of Quadrature Rule  (Continued)

Rule Gauss-Kronrod Rule

f x( ) xd
a

b∫



122  Chapter 2: Reference PV-WAVE:Signal Processing User’s Guide

Synopsis

Triggered by the use of the parameters alpha and beta and one of the following key-
words, in addition to f, a, and b.

result = INTFCN(f, a, b, alpha, beta, /Algebraic)

result = INTFCN(f, a, b, alpha, beta, /Alg_Left_Log)

result = INTFCN(f, a, b, alpha, beta, /Alg_Log)

result = INTFCN(f, a, b, alpha, beta, /Alg_Right_Log)

Returned Value

result — The value of

,

where w(x) is defined by one of the following keywords. If no value can be com-
puted, NaN is returned.

Keywords

In addition to the keywords listed in the Global Keywords section, the following
keywords are available. Exactly one of the following keywords must be specified:

Algebraic — If present and nonzero, uses the weight function

(x – a)α(b – x)β.

This is the default weight function for this method of integration.

Alg_Left_Log — If present and nonzero, uses the weight function

(x – a)α(b – x)βlog(x – a).

Alg_Log — If present and nonzero, uses the weight function

(x – a)α(b – x)βlog(x – a)log(x – b).

f x( )w x( ) xd
a

b∫
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Alg_Right_Log — If present and nonzero, uses the weight function

(x – a)α(b – x)βlog(x – b).

Integration of Functions Over an Infinite or Semi-infinite
Interval

This method integrates functions over an infinite or semi-infinite interval.

Input Parameters

bound — The finite limit of integration. If either of the keywords Inf_Bound or
Bound_Inf are specified, this parameter is required.

Synopsis

Triggered by the presence of the function f, a bound (bound), and one of the key-
words Inf_Inf, Inf_Bound, or Bound_Inf.

result = INTFCN(f, /Inf_Inf)

result = INTFCN(f, bound, /Inf_Bound)

result = INTFCN(f, bound, /Bound_Inf)

Returned Value

result — The value of

,

where a and b are appropriate integration limits. If no value can be computed, NaN
is returned.

Keywords

In addition to the keywords listed in the Global Keywords section, the following
keywords are available (exactly one of the following keywords must be specified):

Bound_Inf — If present and nonzero, integrates a function over the range (bound,
infinity).

f x( ) xd
a

b∫
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Inf_Bound — If present and nonzero, integrates a function over the range (–infin-
ity, bound).

Inf_Inf — If present and nonzero, integrates a function over the range (–infinity,
infinity).

Integration of Functions Containing a Sine or Cosine
Factor

This method integrates functions containing a sine or a cosine factor.

Input Parameters

omega — The frequency of the trigonometric weighting function.

Synopsis

Triggered by the use of parameter omega and one of the keywords Sine or Cosine,
in addition to f, a, and b.

result = INTFCN(f, a, b, omega, /Sine)

result = INTFCN(f, a, b, omega, /Cosine)

Returned Value

result — The value of

,

where the weight function w(ωx) as defined by the following keywords, is returned.
If no value can be computed, NaN is returned.

Keywords

In addition to the keywords listed in the Global Keywords section, the following
keywords are available (exactly one of the following keywords must be specified):

Cosine — If present and nonzero, cos(ωx) is used for the integration weight
function.

Max_Moments — A scalar expression specifying an upper bound on the number
of Chebyshev moments that can be stored. Increasing (decreasing) this number

f x( )w ωx( ) xd
a

b∫
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may increase (decrease) execution speed and space used. (Default: Max_Moments
= 21)

Sine — If present and nonzero, sin(ωx) is used for the integration weight function.

Computation of Fourier Sine or Cosine Transforms

This method computes Fourier sine or cosine transforms.

Input Parameters

omega — The frequency of the trigonometric weighting function.

Synopsis

Triggered by the use of parameter omega and one of the keywords Sine or Cosine,
in addition to f and a.

result = INTFCN(f, a, omega, /Sine)

result = INTFCN(f, a, omega, /Cosine)

Returned Value

result — The value of

,

where the weight function w(ωx) as defined by the following keywords, is returned.
If no value can be computed, NaN is returned.

Keywords

In addition to the keywords listed in the Global Keywords section, the following
keywords are available (exactly one of the keywords Sine or Cosine must be
specified):

Cosine — If present and nonzero, cos(ωx) is used for the integration weight
function.

Max_Moments — The number of subintervals allowed in the partition of each
cycle. (Default: Max_Moments = 21)

N_Cycles — A named variable into which the number of cycles generated is stored.

f x( )w ωx( ) xd
a

∞∫
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Sine — If present and nonzero, sin(ωx) is used for the integration weight function.

Integrals in the Cauchy Principle Value Sense

This method computes integrals of the form

in the Cauchy principal value sense.

Input Parameters

c — The singular point must not equal a or b.

Synopsis

Triggered by the use of parameter c and keyword Cauchy, in addition to f, a, and b.

result = INTFCN(f, a, b, c, /Cauchy)

Returned Value

result — The value of

.

If no value can be computed, NaN is returned.

Keywords

In addition to the keywords listed in the Global Keywords section, the following
keyword is available (requires the use of keyword Cauchy):

Cauchy — If present and nonzero, computes integrals of the form

in the Cauchy principal value sense.

f x( )
x c–
----------- xd

a

b

∫

f x( )
x c–
----------- xd

a

b

∫

f x( )
x c–
----------- xd

a

b

∫



INTFCN Function  127

Integration of Smooth Functions Using a Nonadaptive Rule

This method integrates smooth functions using a nonadaptive rule.

Synopsis

Triggered by the use of keyword Smooth, in addition to f, a, and b.

result = INTFCN(f, a, b, /Smooth)

Returned Value

result — The value of

.

If no value can be computed, NaN is returned.

Keywords

NOTE Because this method is nonadaptive, there are fewer options with the algo-
rithm. For this method, none of the keywords described in the Global Keywords
section apply. A complete list of the available keywords is given as follows. This
method requires the use of the keyword Smooth.

Double — If present and nonzero, uses double precision.

Err_Abs — The absolute accuracy desired.
(Default: Err_Abs = ε1/2, where ε is the machine precision)

Err_Est — A named variable into which an estimate of the absolute value of the
error is stored.

Err_Rel — The relative accuracy desired.
(Default: Err_Rel = ε1/2, where ε is the machine precision)

Smooth — If present and nonzero, uses a nonadaptive rule to compute the integral.

Integration of Two-dimensional Iterated Integrals

This method integrates two-dimensional iterated integrals.

f x( ) xd∫
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Input Parameters

f — A scalar string specifying the name of a user-supplied PV-WAVE function to
be integrated. Function f accepts two scalar parameters and returns a single scalar
of the same type.

a — A scalar expression specifying the lower limit of the outer integral.

b — A scalar expression specifying the upper limit of the outer integral.

h — The name of a user-supplied PV-WAVE function used to evaluate the lower
limit of the inner integral. Function h accepts one scalar parameter and returns a
single scalar of the same type.

g — The name of a user-supplied PV-WAVE function used to evaluate the upper
limit of the inner integral. Function g accepts one scalar parameter and returns a
single scalar of the same type.

Synopsis

Triggered by the use of the parameters g and h and keyword Two_Dimensional in
addition to f, a, and b.

result = INTFCN(f, a, b, g, h, /Two_Dimensional)

Returned Value

result — The value of

.

If no value can be computed, NaN is returned.

Keywords

In addition to the keywords listed in the Global Keywords section, the following
keyword is available and must be specified for this method:

Two_Dimensional — If present and nonzero, integrates a two-dimensional iterated
integral.

f x y,( ) yd xd

g x( )

h x( )

∫∫
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JURYRC Procedure
Synthesizes a Cholesky-factored Toeplitz form from a stable polynomial using the
Jury (reflection coefficient) algorithm.

Usage

JURYRC, alpha_in, a, alpha_out, t, c

Input Parameters

alpha_in — A scaling factor (or prediction error variance).

a — An array of polynomial coefficients.

Output Parameters

alpha_out — An array consisting of the elements of the diagonal matrix factor.

t — The upper triangular matrix factor.

c — An array of reflection coefficients.

Keywords

None.

Discussion

Given the coefficients of a stable, monic polynomial

A(z) = 1 + a1z–1 + ... + anz–n ,

and a scaling factor (prediction error variance α), JURYRC finds an upper triangu-
lar matrix T and a diagonal matrix D that satisfy

aT–1DT–T = [α, 0, 0, ..., 0] ,

where the row array a contains the coefficients of the polynomial
a = [1, a1, ..., an], and the diagonal matrix is given by
D = diag {α(n), α(n – 1), ..., α(0)}. The matrix T–1DT–T = R is Toeplitz. The reflec-
tion coefficients of the polynomial are also returned.

This procedure is one part of a suite of functions (JURYRC, LEVCORR,
LEVDURB, and TOEPSOL) used to solve Toeplitz linear equations and factoriza-
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tion problems. Given the first row of a symmetric Toeplitz matrix R, the function
TOEPSOL is used to solve the equation

(EQ 1)

where α is chosen so that a(0) = 1 in the array a. JURYRC combined with LEV-
CORR are, in essence, the inverse of TOEPSOL, in that given the array of
polynomial coefficients a and scalar α, EQ 1 is solved for the elements of the first
row of R. This inverse operation is accomplished by first finding the elements of
the matrices T and D defined above using JURYRC, and then evaluating the prod-
uct
T–1DT–T using LEVCORR.

NOTE If the zero-order coefficient, a0, of the input polynomial is not equal to 1.0,
the value of alpha_in is modified as alpha_in/a0 and the array of polynomial coef-
ficients is modified as a/a0.

Example

This example illustrates the relationship between JURYRC, TOEPSOL, and
LEVCORR.

r = [1.0d0, 0.9d0, 0.9d0^2, 0.9d0^3, 0.9d0^4, 0.9d0^5]

PM, TRANSPOSE(r), Title = $
’First Row of Original Toeplitz Matrix’

First Row of Original Toeplitz Matrix

1.0000000      0.90000000      0.81000000

0.72900000 0.65610000      0.59049000

; First order autoregressive autocorrelation sequence used to
; form first row of Toeplitz matrix.

b = [1.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0]

a = TOEPSOL(r, b)

; Normalize the polynomial coefficient array a so a(0) = 1.
; Normalization factor is alpha.

alpha = 1/a(0)

a = a/a(0)

JURYRC, alpha, a, alpha_out, t, c

; Compute the Cholesky decomposition (T –1D T –T) from the

Ra

α
0

0

=
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; normalized polynomial coefficients contained in the array a
; obtained from TOEPSOL.

LEVCORR, r_out, alpha_out, t

; Compute the first row of the Toeplitz matrix R = T –1D T –T from
; the matrix and array returned from JURYRC.

PM, TRANSPOSE(r_out), $
Title = ’First Row of Returned Toeplitz Matrix’

First Row of Returned Toeplitz Matrix

1.0000000      0.90000000      0.81000000

0.72900000 0.65610000      0.59049000

See Also

LEVCORR, LEVDURB, TOEPSOL

For Additional Information

Proakis and Manolakis, 1992.

Roberts and Mullis, 1987, p. 527.

Many applications that involve the use of JURYRC, LEVCORR, LEVDURB, and
TOEPSOL may be found in the statistical signal processing texts listed in Back-
ground Reading on page 29.

LEVCORR Procedure
Computes the first row (autocorrelation sequence) of a Toeplitz matrix from its
Cholesky-factored form.

Usage

LEVCORR, r, alpha, t

Input Parameters

alpha — An array consisting of the elements of the diagonal matrix factor.

t — The upper triangular matrix factor.
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Output Parameters

r — An array consisting of the first row of a Toeplitz matrix (the autocorrelation
sequence).

Keywords

None.

Discussion

Given the Cholesky-factored form of a Toeplitz matrix consisting of the upper tri-
angular matrix T and the diagonal matrix D, LEVCORR computes the first row of
the Toeplitz matrix R defined by

T–1DT–T = R ,

where D = diag {a(n), a(n – 1), ..., a(0)}.

LEVCORR is one of a suite of functions (including JURYRC, LEVCORR,
LEVDURB, and TOEPSOL) used to solve Toeplitz linear equations and factoriza-
tion problems. For examples of the use of LEVCORR, see JURYRC and
LEVDURB.

See Also

JURYRC, LEVDURB, TOEPSOL

For Additional Information

Proakis and Manolakis, 1992.

Roberts and Mullis, 1987, p. 527.
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LEVDURB Procedure
Cholesky-factors symmetric, positive, definite Toeplitz matrices using the
Levinson-Durbin algorithm.

Usage

LEVDURB, r, alpha, t, c

Input Parameters

r — An array consisting of the first row of the Toeplitz matrix.

Output Parameters

alpha — An array consisting of the elements of the diagonal matrix factor.

t — The upper triangular matrix factor, also known as the Cholesky decomposition
matrix.

c — An array of reflection coefficients.

Keywords

None.

Discussion

Given the first row of the Toeplitz matrix R, the procedure finds an upper triangular
matrix T and a diagonal matrix
D = diag{a(n), a(n – 1), ..., a(0)} that satisfy the following equation.

D = TRT T

The so-called reflection coefficients of the Toeplitz matrix are also returned. LEV-
DURB is one of a suite of functions (including JURYRC, LEVCORR,
LEVDURB, and TOEPSOL) used to solve Toeplitz linear equations and factoriza-
tion problems.

LEVDURB performs the inverse operation of LEVCORR by accepting the ele-
ments of the matrices D and T and then computing the first row of the Toeplitz
matrix R = T –1DT –T.
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Example

This example illustrates the inverse relationship between LEVDURB and
LEVCORR.

r = [1.0d0, 0.9d0, 0.9d0^2, 0.9d0^3, 0.9d0^4, 0.9d0^5]

; First order autoregressive autocorrelation sequence used
; to form the first row of Toeplitz matrix.

PM, TRANSPOSE(r), Title = $
’First Row of Original Toeplitz Matrix’

First Row of Original Toeplitz Matrix

1.0000000      0.90000000      0.81000000

0.72900000 0.65610000      0.59049000

LEVDURB, r, alpha, t, c

; Compute the Cholesky decomposition T –1DT –T of
; the Toeplitz matrix.

LEVCORR, r_out, alpha, t

; Compute the first row of the Toeplitz matrix R = T –1DT –T from
; the Cholesky decomposition.

PM, TRANSPOSE(r_out), $
Title = ’First Row of Returned Toeplitz Matrix’

First Row of Returned Toeplitz Matrix

1.0000000      0.90000000      0.81000000

0.72900000 0.65610000      0.59049000

See Also

JURYRC, LEVCORR, TOEPSOL

For Additional Information

Proakis and Manolakis, 1992.

Roberts and Mullis, 1987 p. 522.
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LINPROG Function
Solves a linear programming problem using the revised simplex algorithm.

Usage

result = LINPROG(a, b, c)

Input Parameters

a — A two-dimensional matrix containing the coefficients of the constraints. The
coefficient for the i-th constraint is contained in A (i, *).

b — A one-dimensional matrix containing the right-hand side of the constraints. If
there are limits on both sides of the constraints, b contains the lower limit of the
constraints.

c — A one-dimensional array containing the coefficients of the objective function.

Returned Value

result —The solution x of the linear programming problem.

Keywords

Bu — An array with N_ELEMENTS(b) elements containing the upper limit of the
constraints that have both the lower and the upper bounds. If no such constraint
exists, Bu is not needed.

Double — If present and nonzero, double precision is used.

Dual — The name of the variable into which the array with N_ELEMENTS(c) ele-
ments, containing the dual solution, is stored.

Irtype — An array with N_ELEMENTS(b) elements indicating the types of general
constraints in the matrix A. Let

ri = Ai0x0 + ... + Ain–1xn–1 .

The value of Irtype (i) is described in the following table.
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(Default: Irtype(*) = 0)

Itmax — The maximum number of iterations. (Default: Itmax = 10,000)

Obj — The name of the variable into which the optimal value of the objective func-
tion is stored.

Xlb — Array with N_ELEMENTS(c) elements containing the lower bound on the
variables. If there is no lower bound on a variable, 1030 should be set as the lower
bound. (Default: Xlb(*) = 0)

Xub — Array with N_ELEMENTS(c) elements containing the upper bound on the
variables. If there is no upper bound on a variable, –1030 should be set as the upper
bound. (Default: Xub(*) = infinity)

Discussion

LINPROG uses a revised simplex method to solve linear programming problems;
i.e., problems of the form

subject to

where c is the objective coefficient array, A is the coefficient matrix, and the arrays
bl, bu, xl, and xu are the lower and upper bounds on the constraints and the variables.

Values of Irtype

Irtype (i) Constraints

0 ri = Bi

1 ri ≤ Bu

2 ri ≥ Bi

3 Bi ≤ ri ≤ Bu

min cT x
x IRn∈

bl Ax bu≤ ≤

xl x xu≤ ≤
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For a complete discussion of the revised simplex method, see Murtagh (1981) or
Murty (1983).

Example

The linear programming problem in the standard form

min f(x) = –x0 – 3x1

and subject to

x0 + x1 + x2 = 1.5

x0 + x1 + – x3 = 0.5

x0  + x4 = 1.0

x1  + x5 = 1.0

xi ≥ 0, for i = 0, …, 5

is solved.

RM, a, 4, 6

row 0: 1 1 1  0 0 0

row 1: 1 1 0 -1 0 0

row 2: 1 0 0  0 1 0

row 3: 0 1 0  0 0 1

; Define the coefficients of the constraints.

RM, b, 4, 1

row 0: 1.5

row 1: .5

row 2: 1

row 3: 1

; Define the right-hand side of the constraints.

RM, c, 6, 1

row 0: -1

row 1: -3

row 2: 0

row 3: 0

row 4:  0

row 5: 0

; Define the coefficients of the objective function.

PM, LINPROG(a, b, c), Title = ’Solution’

Solution
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0.50000
1.00000
0.00000
1.00000
0.50000
0.00000
; Call LINPROG and print the solution.

For Additional Information

Murtagh, 1981.

Murty, 1983.

LPC Function
Computes the linear prediction coefficients of the denominator polynomial in a fil-
ter structure. This technique is also called the autocorrelation method of
autoregressive (AR) signal modeling and the maximum entropy method (MEM) of
spectrum analysis.

Usage

result = LPC(x, n)

Input Parameters

x — An array containing the data sequence to be modeled using an all-pole predic-
tion filter.

n — The prediction filter order.

Returned Value

result — A filter structure containing the coefficients of the all-pole filter model.

Keywords

None.
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Discussion

Linear prediction is a method of modeling the current value in a sequence x(k) as a
linear combination of the previous values in the sequence

.

LPC computes the coefficients an, n = 1, 2, ..., N to minimize the error given by

using least squares techniques. In matrix form, the problem is to minimize the least
squares error of the system of equations given by

where L + 1 is the length of the signal sequence.

The solution to this problem is obtained by solving the Toeplitz linear equation

x k( ) x̂ k( )≈ anx k n–( )
n 1=

N

∑–=

e k( ) x k( ) x̂ k( )–=

0 0 0

x 0( ) 0 0

x 1( ) x 0( )

x 1( ) 0

x 0( )

x L( ) x 1( )

0 x L( )

0

0 0 x L( )

a1

a2

aN

x 0( )–

x 1( )–

x– L( )

0

0

=

r̂ 0( ) r̂ 1( ) r̂ N 1–( )

r̂ 1( )

r̂ 1( )

r̂ N 1–( ) r̂ 1( ) r̂ 0( )

a1

a2

aN

r̂ 1( )–

r̂ 2( )–

r̂ n( )–

=
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where the sample autocorrelation sequence is given by

.

LPC uses TOEPSOL to efficiently solve the Toeplitz linear equation.

The linear prediction coefficients are returned in a stable filter structure as an all-
pole IIR filter given by

.

Example

This example illustrates how LPC may be used to model a first order autoregressive
signal.

har = FILTSTR(1, [1, -.9])

RANDOMOPT, set = 29

x = RANDOM(1000, /Normal)

y = FILTER(har, x)

; Generate a first order autoregressive signal.

h = LPC(y, 5)

; Compute the coefficients of the all-pole filter model

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), Linestyle = 2, Title = $
’Signal Spectrum (solid line) and AR(5) ’ + $
’Model Spectrum’, $
XTitle = ’Normalized Frequency’

harf = FREQRESP_Z(har, Outfreq = f)

OPLOT, f, ABS(harf)

; Plot the signal spectrum and model spectrum (Figure 2-26).

r̂ k( ) x n( )x n k+( )
n

∑=

z( ) B z( )
A z( )
---------- 1

1 a+ 1z 1– … aNz N–+ +
-------------------------------------------------------= =
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Figure 2-26 Plot of the signal spectrum and the autoregressive prediction signal using LPC.

See Also

TOEPSOL

For Additional Information

Jayant and Noll 1984, pp. 267-269.

Scharf 1991, pp. 452-456.

Therrien 1992, pp. 536-537.
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NLINLSQ Function
Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt
algorithm.

Usage

result = NLINLSQ(f, m, n)

Input Parameters

f — A scalar string specifying a user-supplied function to evaluate the function that
defines the least-squares problem. The f function accepts the following two param-
eters and returns an array of length m containing the function values at x:

m — The number of functions.

x — An array of length n containing the point at which the function is
evaluated.

m — The number of functions.

n — The number of variables where n ≤ m.

Returned Value

result —The solution x of the nonlinear least-squares problem.

Keywords

Double — If present and nonzero, double precision is used.

Fjac — The name of the variable into which an array of size n-by-m containing the
Jacobian at the approximate solution is stored.

FScale — An array with m components containing the diagonal scaling matrix for
the functions. The i-th component of FScale is a positive scalar specifying the
reciprocal magnitude of the i-th component function of the problem. (Default:
FScale(*) = 1)

Fvec — The name of the variable into which a real array of length m containing the
residuals at the approximate solution is stored.

Good_Digits — The number of good digits in the function. (Default: machine
dependent)
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Intern_Scale — An internal variable scaling option. With this keyword, the values
for XScale are set internally.

Itmax — The maximum number of iterations. (Default: Itmax = 100)

Jacobian — A scalar string specifying a user-supplied function to compute the
Jacobian. This function accepts two parameters and returns an n-by-m array con-
taining the Jacobian at the input point s. Note that each derivative ∂fi / ∂xi  should
be returned in the (i, j) element of the returned matrix. The parameters of the func-
tion are as follows:

m — The number of equations.

x — An array of length n at which the point Jacobian is evaluated.

JTJ_inverse — The name of the variable into which an array of size
n-by-m containing the inverse matrix of J TJ , where J is the final Jacobian, is
stored. If J TJ is singular, the inverse is a symmetric gz inverse of J TJ. (See the
PV-WAVE: IMSL Mathematics Reference CHNNDSOL function for a discussion
of generalized inverses and the definition of the gz inverse.)

Max_Evals — The maximum number of function evaluations. (Default:
Max_Evals = 400)

Max_Jacobian — The maximum number of Jacobian evaluations. (Default:
Max_Jacobian = 400)

Max_Step — The maximum allowable step size.
(Default: Max_Step = 1000max(ε1, ε2),
where

, and ,

s = XScale, and t = XGuess)

Rank — The name of the variable into which the rank of the Jacobian is stored.

Tol_Afcn — The absolute function tolerance. (Default: Tol_Afcn = max(10–20, ε2),
[max(10–40, ε2) in double], where ε is the machine precision)

Tolerance — The tolerance used in determining linear dependence for the compu-
tation of the inverse of J TJ . (If Jacobian is specified,
Tolerance = 100ε where ε is the machine precision, is the default; otherwise, ε1/2,
where ε is the machine precision, is the default.)

Tol_Grad — The scaled gradient tolerance. The i-th component of the scaled gra-
dient at x is calculated as

ε1 siti
2

i 1=
n∑= ε2 s 2=
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,

where g = ∇F(x), s = XScale, and

.

(Default: Tol_Step = ε1/2 (ε1/3 in double), where ε is the machine precision)

Tol_Rfcn — The relative function tolerance. (Default: Tol_Rfcn = max(10–10, ε2/3),
[max(10–40, ε2/3) in double], where ε is the machine precision)

Tol_Step — The scaled step tolerance. The i-th component of the scaled step
between two points x and y is computed as

where s = XScale. (Default: Tol_Step = ε2/3, where ε is the machine precision)

Trust_Region — The size of initial trust-region radius. (Default: based on the ini-
tial scaled Cauchy step)

XGuess — An array with N components containing an initial guess. (Default:
XGuess(*) = 0)

XScale — An array with n components containing the scaling array for the vari-
ables. Keyword XScale is used mainly in scaling the gradient and the distance
between two points. See keywords Tol_Grad and Tol_Step for more detail.
(Default: XScale(*) = 1)

See CHNNDSOL for a discussion of generalized inverses and the definition of the
gz inverse.

Discussion

NLINLSQ is based on the MINPACK routine LMDER by Moré et al. (1980), and
uses a modified Levenberg-Marquardt method to solve nonlinear least-squares
problems.

(For more details about the algorithms used by NLINLSQ, refer to the description
of NLINLSQ in the PV-WAVE: IMSL Mathematics Reference.)

gi max xi 1 si⁄,( )×
1
2
--- F x( )

2

2
---------------------------------------------------

F x( )
2

2
f i x( )2

i 1=

m∑=

xi yy–

max xi 1 si⁄,( )
------------------------------------
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The problem is stated as follows:

,

where m ≥ n, F : Rn → Rm and fi(x) is the i-th component function of F(x). From a
current point, the algorithm uses the trust region approach

subject to

to get a new point x0, compute xs as

xn = xc – [ J(xc)
TJ(xc) + µcI]

–1J(xc)
TF(xc)

where µc = 0 if ,

and µc ≥ 0 otherwise. The value µc is defined by the function. The array and matrix
F(xc) and J(xc) are the function values and the Jacobian evaluated at the current
point xc. This function is repeated until the stopping criteria are satisfied.

The first stopping criterion for NLINLSQ occurs when the norm of the function is
less than the absolute function tolerance, Tol_Afcn. The second stopping criterion
occurs when the norm of the scaled gradient is less than the given gradient toler-
ance Tol_Grad. The third stopping criterion for NLINLSQ occurs when the scaled
distance between the last two steps is less than the step tolerance Tol_Step. For
more details, see Levenberg (1944), Marquardt (1963), or Dennis and Schnabel
(1983, Chapter 10).

Example

This example uses the nonlinear data-fitting problem found in Dennis and Schnabel
(1983, p. 225).

NOTE For more information on the problem that is being solved in this example,
refer to the description of NLINLSQ in the PV-WAVE: IMSL Mathematics
Reference.

in
1
2
---F x( )T F x( )

1
2
--- f i x( )2

i 1=

m

∑=

min F xc( ) J xc( ) xn xc–( )+ 2
x IRn∈

xn xc– 2 δc≤

δc J xc( )T J xc( )( )
1–
J xc( )T F xc( ) 2≥
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The problem is stated as follows:

where

,

is solved with the data t = [1, 2, 3] and y = [2, 4, 3].

.RUN

; Define the function that defines the least-squares problem.

FUNCTION f, m, x

y = [2, 4, 3]

t = [1, 2, 3]

RETURN, EXP(x(0) * t) - y

END

% Compiled module: F.

solution = NLINLSQ("f", 3, 1)

PM, solution, Title = ’The solution is:’

The solution is:

0.440066

; Output the results.

PM, f(m, solution), Title = $
’The function values are:’

The function values are:

-0.447191

-1.58878

0.744159

See Also

In the PV-WAVE: IMSL Mathematics Reference:

CHNNDSOL

in
1
2
--- f i x( )2

i 0=

3

∑

f i x( ) e
tix

yi–=
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For Additional Information

Dennis and Schnabel, 1983, Chapter 10.

Levenberg, 1944.

Marquardt, 1963.

Moré, Garbow and Hillstrom,1980.

NONLINPROG Function
Solves a general nonlinear programming problem using the successive quadratic
programming (QP) algorithm.

Usage

result = NONLINPROG(f, m, n)

Input Parameters

f — A scalar string specifying a user-supplied procedure to evaluate the function at
a given point. Procedure f has the following parameters:

m — The total number of constraints.

meq — The number of equality constraints.

x — A one-dimensional array at which point the function is evaluated.

active — A one-dimensional array with mmax components indicating the
active constraints where mmax is the maximum of (1, m).

f — The computed function value at the point x. (Output)

g — A one-dimensional array with mmax components containing the val-
ues of the constraints at point x, where mmax is the maximum (1, m).
(Output)

m — The total number of constraints.

n — The number of variables.
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Returned Value

result —The solution of the nonlinear programming problem.

Keywords

Double — If present and nonzero, double precision is used.

Err_Rel — The final accuracy. (Default: Err_Rel = ε1/2, where ε is the machine
precision)

Grad — A scalar string specifying a user-supplied procedure to evaluate the gradi-
ents at a given point. The procedure specified by Grad has the following
parameters:

mmax — The maximum of (1, m).

m — The total number of constraints.

meg — The number of equality constraints.

x — The array at which point the function is evaluated.

active — An array with mmax components indicating the active
constraints.

f — The computed function value at the point x.

g — An array with mmax components containing the values of the con-
straints at point x.

df — An array with n components containing the values of the gradient of
the objective function. (Output)

dg — An array of size n-by-mmax containing the values of the gradients
for the active constraints. (Output)

Ibtype — A scalar indicating the types of bounds on the variables as shown in the
following table.

Ibtype Values for Variable Bounds

Ibtype Action

0 User supplies all the bounds.

1 All variables are nonnegative.
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(Default: no bounds are enforced)

Itmax — The maximum number of iterations allowed. (Default: Itmax = 200)

Meq — The number of equality constraints. (Default: Meg = m)

Obj — The name of a variable into which a scalar containing the value of the objec-
tive function at the computed solution is stored.

XGuess — An array with n components containing an initial guess of the computed
solution. (Default: XGuess(*) = 0)

Xlb — A named variable, containing a one-dimensional array with n components,
containing the lower bounds on the variables. (Input, if Ibtype = 0; Output, if Ibtype
= 1 or 2; Input/Output, if Ibtype = 3). If there is no lower bound on a variable, the
corresponding Xlb value should be set to –106 . (Default: no lower bounds are
enforced on the variables)

XScale — An array with n components containing the reciprocal magnitude of
each variable. Keyword XScale is used to choose the finite-difference step size, h.
The i-th component of h is computed as
ε1/2*max(xi, 1/si) *sign(xi), where ε is the machine precision,
s = XScale, and sign(xi) = 1 if xi ≥ 0; otherwise, sign(xi) = –1.
(Default: XScale(*) = 1)

Xub — A named variable, containing a one-dimensional array with n components,
containing the upper bounds on the variables. (Input, if Ibtype = 0; Output, if Ibtype
= 1 or 2; Input/Output, if Ibtype = 3). If there is no upper bound on a variable, the
corresponding Xub value should be set to 106. (Default: no upper bounds are
enforced on the variables)

Discussion

NONLINPROG is based on the subroutine NLPQL developed by Schittkowski
(1986), and uses a successive quadratic programming method to solve the general
nonlinear programming problem. The problem is stated as follows:

2 All variables are non-positive.

3 User supplies only the bounds on first variable; all
other variables have the same bounds.

Ibtype Values for Variable Bounds

Ibtype Action

min f x( )
x IRn∈
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subject to

gj(x) = 0 , for j = 0, ..., me –1

gj(x) ≥ 0 , for j = me, ..., m – 1

(xl ≤ x ≤ xu) ,

where all problem functions are assumed to be continuously differentiable. The
method, based on the iterative formulation and solution of quadratic programming
(QP) subproblems, obtains these subproblems by using a quadratic approximation
of the Lagrangian and by linearizing the constraints. That is,

subject to

∇gj(xk)
Td + gj(xk) = 0 , for j = 0, ..., me –1

∇gj(xk)
Td + gj(xk) ≥ 0 , for j = me, ..., m –1

xl – xk ≤ d ≤ xu – xk

where Bk is a positive definite approximation of the Hessian and xk is the current
iterate. Let dk be the solution of the subproblem. A line search is used to find a new
point xk + 1

xk + 1 = xk + λdk λ ∈ (0, 1]

such that a “merit function” has a lower function value at the new point. Here, the
augmented Lagrange function (Schittkowski 1986) is used as the merit function.

When optimality is not achieved, Bk is updated according to the modified BFGS
formula (Powell 1978). Note that this algorithm may generate infeasible points
during the solution process. Therefore, if feasibility must be maintained for inter-
mediate points, this function may not be suitable. For more theoretical and practical
details, see Stoer (1985), Schittkowski (1983, 1986), and Gill et al. (1985).

min
1
2
---dT Bkd f xk( )T d∇+

x IRn∈
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For more details about the algorithms used by NONLINPROG, refer to the descrip-
tion of NONLINPROG in the PV-WAVE: IMSL Mathematics Reference.

Example

The problem

min F(x) = (x1 – 2)2 + (x2 – 1)2

subject to

g1(x) = x1 – 2x2 + 1 = 0

g2(x) = –x1
2/4 – x2

2 + 1 ≥ 0

is solved.

.RUN

; Define the procedure to evaluate the function at a given point.

PRO f, m, meq, x, active, f, g

tmp1 = x(0) - 2.

tmp2 = x(1) - 1.

f = tmp1^2 + tmp2^2

g = FLTARR(2)

IF active(0) THEN g(0) = x(0) - 2. * x(1) + 1.

IF active(1) THEN g(1) = -(x(0)^2)/4. - x(1)^2 + 1.

END

% Compiled module: F.

x = NONLINPROG(’f’, 2, 2, Meq = 1)

; Compute the solution.

PM, x, Title = ’Solution:’

Solution:

0.822902

0.911452

See Also

In the PV-WAVE: IMSL Mathematics Reference:

NONLINPROG

For Additional Information

Gill, Murray, Saunders and Wright, 1985.
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Powell, 1978.

Schittkowski, 1983, 1986.

Stoer, 1985.

NORM Function
Computes various norms of an array, or the difference of two arrays.

Usage

result = NORM(x [, y])

Input Parameters

x — An array for which the norm is to be computed.

y — (optional) If present, NORM computes the norm of (x – y).

Returned Value

result — The requested norm of the input array. If the norm cannot be computed,
NaN is returned.

Keywords

Index_Max — A named variable into which the index of the element of x with the
maximum modulus is stored. If Index_Max is used, the keyword Inf must also be
used. If the parameter y is specified, the index of (x – y) with the maximum modulus
is stored.

Inf — If present and nonzero, computes the infinity norm maxxi.

One — If present and nonzero, computes the 1-norm

.xi

i 0=

n 1–

∑
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Discussion

For more detailed information, see the description of NORM in the PV-WAVE Per-
sonal Edition:Statistics Toolkit Reference.

By default, NORM computes the Euclidean norm as follows:

If the keyword One is set, the 1-norm

is returned. If the keyword Inf is set, the infinity norm

maxxi

is returned. In the case of the infinity norm, the index of the element with maximum
modulus also is returned.

If the parameter y is specified, the computations of the norms described above are
performed on (x – y).

Example 1

In this example, the Euclidean norm of an input array is computed.

x = [1.0, 3.0, -2.0, 4.0]

n = NORM(x)

PM, n, Title = ’Euclidean norm of x:’

Euclidean norm of x:
5.47723

Example 2

This example computes max | xi – yi | and prints the norm and index.

xi
2

i 0=

n 1–

∑
 
 
 
 

1
2
---

xi

i 0=

n 1–

∑
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x = [1.0, 3.0, -2.0, 4.0]

y = [4.0, 2.0, -1.0, -5.0]

n = NORM(x, y, /Inf, Index_Max = imax)

PM, n, Title = ’Infinity norm of (x-y):’

Infinity norm of (x-y):
9.00000

PM, imax, Title = $
’Element of (x-y) with maximum modulus:’

Element of (x-y) with maximum modulus:
3

OPLOTCOMB Procedure
Produces a comb plot over a previously drawn plot.

Usage

OPLOTCOMB, signal

OPLOTCOMB, abscissa, signal

Input Parameters

abscissa — A one-dimensional array containing the abscissa of the signal to be
plotted.

signal — A one-dimensional array containing the signal to be plotted.

Keywords

Color — Specifies the index of the plot color to use for the comb plot.

Discussion

OPLOTCOMB uses OPLOT to produce a comb plot over a previously drawn plot.

Example

In this example, OPLOTCOMB is used to overlay a plot on a plot previously drawn
using PLOTCOMB.

n = 50
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t = 2*!Pi*(FINDGEN(n)/n)

PLOTCOMB, t, SIN(t)

; Plot one full period of a sine wave, using PLOTCOMB.

!P.Linestyle = 1

; Change line style to dotted.

OPLOTCOMB, t, -SIN(t)

; Multiply the sine wave by (–1) and plot with dotted lines
; using the OPLOTCOMB procedure.

Figure 2-27 An inverted sine wave comb plot (dotted comb lines) is overlaid (using OPLOT-
COMB) on top of the original sine wave comb plot (solid comb lines).

See Also

PLOTCOMB

In the PV-WAVE Reference:

OPLOT, PLOT
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PAIRCONJ Function
Sorts a one-dimensional array of complex values into complex conjugate pairs.

Usage

result = PAIRCONJ(z)

Input Parameters

z — A one-dimensional array of complex values.

Returned Value

result — A complex array with the values sorted into complex conjugate pairs.

Keywords

None.

Discussion

PAIRCONJ returns a one-dimensional array containing the input data, but rear-
ranged into complex conjugate pairs. If there are values in z that do not appear to
match up, they are put at the end of the output array. If there are an odd number of
complex values in z (with the imaginary part not equal to zero), the function returns
0 and an error message.

Example

In this example, PAIRCONJ is used on two sets of complex conjugate pairs. PAIR-
CONJ returns the data as one set of ordered complex conjugate pairs.

z = COMPLEX([2,1,2,1],[9,-3,-9,3])

; The input is a simple array of complex conjugates all mixed up.
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PM, z

(      2.00000,      9.00000)

(      1.00000,     -3.00000)

(      2.00000,     -9.00000)

(      1.00000,      3.00000)

z2 = PAIRCONJ(z)

; Complex values are output in conjugate pairs.

PM, z2

(      1.00000,     -3.00000)

(      1.00000,      3.00000)

(      2.00000,     -9.00000)

(      2.00000,      9.00000)

See Also

PAIRINV

PAIRINV Function
Sorts a set of complex values into reciprocal pairs.

Usage

result = PAIRINV(z)

Input Parameters

z — A one-dimensional array of complex values.

Returned Value

result — A complex array with the values sorted into reciprocal pairs.

Keywords

None.



158  Chapter 2: Reference PV-WAVE:Signal Processing User’s Guide

Discussion

PAIRINV returns an array of the input data sorted into reciprocal pairs. Each pair
(except |z| = 1) must have one value inside the unit circle
(|z| < 1) and one outside (|z| > 1). The value inside the unit circle is the first element
of the pair and the value outside the unit circle is the second. If there are values in
z that do not appear to match up, they are put at the end of the output array in no
particular order.

Example

In this example, the input to PAIRINV is a jumbled set of reciprocal pairs of com-
plex numbers.

z = COMPLEX(1,1)

; A complex number z = 1 + j.

a = [z*3, 1/z, 1/(z*3), z]

; Create the jumbled set of reciprocal pairs.

PM, a

(      3.00000,      3.00000)

(     0.500000,    -0.500000)

(     0.166667,    -0.166667)

(      1.00000,      1.00000)

p = PAIRINV(a)

PM, p

(     0.500000,    -0.500000)

(      1.00000,      1.00000)

(     0.166667,    -0.166667)

(      3.00000,      3.00000)

See Also

PAIRCONJ
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PARSEFILT Procedure
Parses a filter structure and returns the individual members of the structure.

Usage

PARSEFILT, h, name, b, a

Input Parameters

h — A filter structure.

Returned Value

name — A scalar string containing the name field of the filter.

b — The coefficients of the numerator polynomial of the filter.

a — The coefficients of the denominator polynomial of the filter.

Keywords

None.

Discussion

PARSEFILT parses a filter structure, H(z)

and returns the individual coefficients of the numerator and the denominator poly-
nomials of the structure.

Example

In this example, an IIR filter is created using IIRDESIGN, and the individual parts
of the filter are extracted using PARSEFILT.

h = IIRDESIGN(7, .5, /Butter)

PARSEFILT, h, name, b, a

H z( ) B z( )
A z( )
----------

b0 b1z 1– … bMz M–+ + +

1 a1z 1– … aNz N–+ + +
-----------------------------------------------------------= =
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PM, name, Title = 'Filter name:'

Filter name:
Butterworth

PM, b, Title = 'Numerator Coefficients:'

Numerator Coefficients:
0.016565294
0.11595706
0.34787117
0.57978528
0.57978528
0.34787117
0.11595706
0.016565294

PM, a, Title = 'Denominator Coefficients:'

Denominator Coefficients:
1.0000000
0.0000000
0.91997300
0.0000000
0.19270116
0.0000000
0.0076834509
0.0000000

See Also

FILTSTR
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PARSEWAVELET Function
Extracts the wavelet transform coefficients from a wavelet data structure.

Usage

result = PARSEWAVELET(waveletstruct, n)

Input Parameters

waveletstruct — The output of the forward wavelet transform created by the
WAVELET function.

n — An index of the wavelet transform coefficient data structure level.

NOTE The input parameter n must be between 1 and the number of QMFs + 1,
inclusive.

Returned Value

result — A double-precision array of coefficients of the n-th level of the wavelet
transform.

Keywords

None.

Discussion

PARSEWAVELET extracts the coefficients from the n-th level of the wavelet trans-
form from the wavelet transform data structure. For the definition of the wavelet
transform levels, see WAVELET.

The index n passed into PARSEWAVELET is the number of the transform stage
from which to retrieve the output. If n is one greater than the number of stages, the
lowpass output of the last stage is returned instead.

For an example of the use of PARSEWAVELET, see the WAVELET Function
example.
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See Also

WAVELET

PLOTCOMB Procedure
Creates a comb plot of an input signal.

Usage

PLOTCOMB, signal

PLOTCOMB, abscissa, signal

Input Parameters

abscissa — A one-dimensional array containing the abscissa of the signal to be
plotted.

signal — A one-dimensional array containing the signal to be plotted.

Keywords

Color — Specifies the index of the plot color to use for the comb plot.

Title — A string containing the title above the plot.

Xrange — A two-element array containing the desired data range for the x-axis.

Xtitle — A string containing the title of the x-axis.

Yrange — A two-element array containing the desired data range for the y-axis.

Ytitle — A string containing the title of the y-axis.

Discussion

PLOTCOMB uses PLOT and OPLOT to produce a comb plot. Keywords can be
used to add a plot title, axis titles, and to specify the range of the axis to be plotted.

Example

In this example, a comb plot is created for a combined sinusoidal signal.
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t = FINDGEN(50)/49

PLOTCOMB, t, SIN(2*!Pi*t) + .5*COS(6*!Pi*t)

; Generate the comb plot of the signal.

Figure 2-28 Comb plot of the combined sinusoidal signal.

See Also

OPLOTCOMB

In the PV-WAVE Reference:

OPLOT, PLOT

x n( )
2πn
N

---------- 
 sin

1
2
--- 6πn

N
---------- 

 cos+= for n =  0, 1, ..., N = 49
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PLOTZP Procedure
Creates a root locus (zero-pole) plot.

Usage

PLOTZP, h

Input Parameters

h — The filter structure.

Keywords

Lines — If present and nonzero, causes lines to be drawn from the origin to the
poles and zeros.

Print — If present and nonzero, causes the poles and zeros to be printed to the stan-
dard output.

Radius — If present and nonzero, overrides the automatic range calculations and
sets the x- and y-ranges of the plot to the specified range [–r, r].

Title — A string containing the title of the plot.

Discussion

For a given filter structure H(z) of the form

,

zeros are the values of z, which when used to evaluate the filter structure numerator
polynomial return the value zero. The poles are the values of z which return the
value zero when used to evaluate the denominator polynomial of the filter structure.

PLOTZP plots the zeros of H(z) with a circular plot symbol (“O”), and uses an “X”
to indicate the poles of H(z).

H z( ) B z( )
A z( )
----------

b0 b1z 1– … bMz M–+ + +

a0 a1z 1– … aNz N–+ + +
-----------------------------------------------------------= =
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CAUTION It is important to note that PLOTZP uses root finding to obtain the
zeros and poles of the filter structure. If either the numerator or the denominator
polynomial have repeated roots, the function may generate error messages.

Example 1

In this example, the poles and zeros of an elliptic filter are plotted.

h = IIRDESIGN(4, .5, .05, .05, /Ellip)

; Create an elliptical IIR filter.

PLOTZP, h

; Plot the poles and zeros of the filter (see Figure 2-29).

Figure 2-29 Zero-pole plot for an elliptic filter. The “O”s represent zeros of H(z), and the
“X”s represent the poles of H(z).

Example 2

In this example, PLOTZP prints out the poles and zeros and draws lines from the
origin to the poles and zeros.

h = IIRDESIGN(4, .5, .05, .05, /Ellip)

; Create an elliptical IIR filter.

PLOTZP, h, /Print, /Lines

The zeros are at:
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(    -0.752679,     0.658388)(    -0.752679,    -0.658388)
(    -0.261730,     0.965141)(    -0.261730,    -0.965141)

The poles are at:

(   -0.0287310,     0.906404)(   -0.0287310,    -0.906404)
(     0.154772,     0.456417)( 0.154772,  -0.456417)

; Print the numerical values of the poles and zeros, plot the
; poles and zeros, and draw lines to them from the origin
; (see Figure 2-30).

Figure 2-30 Zero-pole plot created with the Lines keyword specified.

See Also

ZEROPOLY
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P_DEG Function
Numerically determines the degree of a polynomial.

Usage

result = P_DEG(a)

Input Parameters

a — An array of coefficients of a polynomial.

Returned Value

result — The degree of the polynomial.

Keywords

Epsilon — Specifies a value above which P_DEG ignores higher order coefficients
of the polynomial. If Epsilon is not set, the default value is based on the square root
of machine epsilon.

Discussion

For a given polynomial A(z), such as

A(z) = a0 + a1z–1 + a2z–2 + ... + aNz–N ,

P_DEG determines M ≤ N such that ai ≤ Epsilon for i = M + 1, M + 2, ..., N.

Example

In this example, the degree of a polynomial
A(z) = 5 + 4z–1 + 8z–2 + z–3  is computed with trailing zeros.

a= [5, 4, 8, 1, 0, 0, 0, 0]

PRINT, P_DEG(a)

3
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P_DIV Procedure
Divides two polynomials and returns the quotient polynomial and the remainder
polynomial.

Usage

 P_DIV, b, a, q, r

Input Parameters

b — The array of real coefficients of the numerator polynomial.

a — The array of real coefficients of the denominator polynomial.

Output Parameters

q — The array of coefficients of the quotient polynomial.

r — The array of coefficients of the remainder polynomial.

Keywords

Epsilon — Specifies a value above which the procedure ignores all higher order
coefficients of the polynomial. If Epsilon is not set, the default value is 0.0d.

Discussion

For two polynomials b(x) and a(x), such that

b(x) = b0 + b1x + b2x2 + ... + bMxM  and

a(x) = a0 + a1x + a2x2 + ... + aNxN ,

P_DIV computes q(z), called the quotient polynomial, and r(z), the remainder poly-
nomial. P_DIV uses the following relationship

b(x) = a(x)q(x) + r(x) .
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Example

In this example, P_DIV is used to compute the quotient of a polynomial with real
coefficients b(x) = 2 + 7x + 6x2 + x3 , divided by
a(x) = 1 + x.

 P_DIV, [2, 7, 6, 1], [1, 1], q, r

 PM, q

2.0000000

5.0000000

1.0000000

; The quotient polynomial is q(x) = 2 + 5x + x2.

PM, r

0.0000000

; No remainder.

See Also

P_MULT

For Additional Information

Blahut, 1985.

P_MULT Function
Multiplies two polynomials.

Usage

result = P_MULT(a, b)

Input Parameters

a — The array of coefficients of the first polynomial.

b — The array of coefficients of the second polynomial.

2 7x 6x2 x3+ + +( )
1 x+( )

----------------------------------------------- 1 x+( ) 2 5x x2+ +( )
1 x+( )

------------------------------------------------- 2 5x x2+ +( )= =
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Returned Value

result — An array of coefficients representing the product of the two polynomials.

Keywords

None.

Discussion

Polynomial multiplication simply amounts to convolving the coefficients of the
polynomials. P_MULT uses the CONVOL1D function to perform this operation.

Example

In this example, two polynomials with real coefficients are multiplied: a(x) = 1 + x
and b(x) = 1 + 2x + 2x2 + x3 . The solution should be
(1 + x)(1 + 2x +2x2 + x3) = 1 + 3x + 4x2 + 3x3 + x4 .

a = [1, 1]

b = [1, 2, 2, 1]

c = P_MULT(a, b)

PM, c

1.0000000

3.0000000

4.0000000

3.0000000

1.0000000

; Which matches the expected solution.

See Also

CONVOL1D

For Additional Information

Blahut, 1985
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P_SQRT Function
Polynomial spectral factorization.

Usage

result = P_SQRT(c)

Input Parameters

c — An array containing the coefficients of a polynomial.

Returned Value

result — An array of coefficients of the minimum phase spectral factor.

Keywords

None.

Discussion

Given a nonnegative, symmetric polynomial c(z), such that

c(z) = c(z–1) > 0 ,

find another polynomial a(z) such that

c(z) = a(z)a(z–1) .

The array c is in the standard form for ZEROPOLY, which means that the polyno-
mial is:

p = c0 + c1z + c2z2 + ... + cnzn .

NOTE The polynomial returned by P_SQRT is made of positive powers of z. To
get a polynomial in z–1, use the REVERSE function to reverse the coefficient array.

CAUTION If the polynomial returned from P_SQRT is multiplied by its reverse,
such as you can do using the PV-WAVE function REVERSE, the result may be
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scaled differently than the original array. The returned polynomial may be off by a
constant factor.

Example

In this example, P_SQRT is used with the polynomial a(x), such that

x2 + 2x + 1 = (x + 1)2 = a(x) .

a = [1, 2, 1]

; Because x2 + 2x + 1 = (x + 1)(x + 1), factorizing a(x) should
; return (x + 1).

PM, P_SQRT(a)

1.0000000

1.0000000

See Also

ZEROPOLY

In the PV-WAVE Reference:

REVERSE

P_STAB Function
Stabilizes a filter polynomial by reflecting any roots that exist outside the unit circle
to points within the unit circle.

Usage

result = P_STAB(c)

Input Parameters

c — An array of coefficients of a polynomial in positive powers of the independent
variable, such as would be used in ZEROPOLY.
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Returned Value

result — An array of polynomial coefficients of the transformed, stable
polynomial.

Keywords

Information — If present and nonzero, information regarding the number of unsta-
ble roots in the polynomial is returned.

Scale — If present and nonzero, the output polynomial is scaled such that the first
element is the same as the first element of the input polynomial.

Discussion

Given a polynomial whose roots lie either inside or outside of the unit circle,
another polynomial is created whose roots are all inside the circle and is therefore
stable. This is done by mirroring the outsiders into the circle. The transform results
in a polynomial that is stable, but has the same magnitude response. The magnitude
response is thus maintained, while the polynomial becomes stable.

CAUTION P_STAB relies on root finding which can create problems if the input
polynomial has repeated roots. P_STAB is also restricted by the accuracy of
ZEROPOLY.

Example

In this example, a Butterworth filter is used since it is likely to have some of its
zeros located on or just outside the unit circle, and therefore be marginally unstable.
The Butterworth filter is converted to a stable filter, one with all its poles and zeros
inside the unit circle, using the P_STAB function.

h = IIRDESIGN(8, 0.5, /Butter)

; Create a Butterworth filter.

PARSEFILT, h, name, num, den

; Extract the numerator and denominator polynomials from the filter.

new_num = P_STAB(num)

new_den = P_STAB(den)

; Stabilize the numerator and denominator polynomials.

new_den = new_den/new_den(0)

; Scale the denominator so that a0 = 1.0.
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new_num = TOTAL(new_den)/TOTAL(new_num)*new_num

; Scale the denominator so that h1 = 1.0, which is the same thing
; as saying that the filter amplitude at zero frequency is unity.

newh = FILTSTR(new_num, new_den)

; Make a new filter out of the new numerator and denominator
; polynomials.

resp = FREQRESP_Z(newh, Outfreq = f)

PLOT, f, ABS(resp)

; Plot the frequency response of this new filter just to show that it
; has the same characteristics as the original (Figure 2-31).

Figure 2-31 Frequency response plot of the stabilized Butterworth filter. Note that the fre-
quency response of the stabilized filter is identical to the original, default Butterworth filter
created using IIRDESIGN.

See Also

ZEROPOLY

For Additional Information

Roberts and Mullis, 1987, p. 202.
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P_SUM Function
Computes the sum of two polynomials.

Usage

result = P_SUM(a, b)

Input Parameters

a — The array of coefficients of the first polynomial.

b — The array of coefficients of the second polynomial.

Returned Value

result — An array of coefficients representing the sum of two polynomial coeffi-
cient arrays.

Keywords

None.

Discussion

Given two polynomials A(z) and B(z), such as

A(z) = a0 + a1z–1 + a2z–2 + ... + aNz–N

and

B(z) = b0 + b1z–1 + b2z–2 + ... + bMz–M ,

their polynomial sum is simply

C(z) = A(z) + B(z) .

The degree of the resulting polynomial C(z) is the maximum of the degrees (N and
M) of the two supplied polynomials A(z) and B(z).

Example

In this example, two polynomials, A(z) = 1 + 3z–1 ,
and B(z) = 1 + 2z–1 + 2z–2 + z–3 are added together using P_SUM.
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a = [1, 3]

b = [1, 2, 2, 1]

c = P_SUM(a, b)

PM, c

2

5

2

1
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2
Reference

QMF Procedure
Applies a perfect reconstruction quadrature mirror filter (QMF) structure to a data
sequence.

Usage

QMF, h, x, n, x0, x1

QMF, h, y, n, x0, x1, /Backward

Input Parameters

h — A finite impulse response (FIR) quadrature mirror filter structure.

Parameters for the forward QMF computation (default):

x — A data sequence to be processed.

n — (scalar) The length of the data sequence to process.

Parameters for the backward QMF computation:

x0 — The lowpass filtered and decimated signal.

x1 — The highpass filtered and decimated signal.

n — (scalar) The length of the reconstructed data sequence.

Output Parameters

Specific to the forward QMF computation (default):

x0 — The filtered and decimated lowpass signal.

x1 — The filtered and decimated highpass signal.

Specific to the backward QMF computation:

y — The reconstructed data sequence.

Keywords

Backward — If present and nonzero, the backward QMF operation is computed.
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Discussion

QMF realizes the filter structures shown in Figure 2-32. The definitions of the
multirate filtering operations shown in the figure are in the reference pages for
FILTUP and FILTDOWN.

Figure 2-32 Signal flows for the forward and backward QMF procedures.

The four FIR filters shown in Figure 2-32 are obtained from a single QMF filter
that satisfies

H(z)2 + H(–z)2 = 1 .

Such a QMF may be obtained using QMFDESIGN. The four filters are given by

H0(z) = 21/2H(z)

H1(z) = z–NH0(–z–1)

and

,

where N is the order of H(z). The filter H0(z) is generally a lowpass filter, and H1(z)
is generally a highpass filter.

y(n)

2

2

H0(z)

H1(z)

+

~

~

Backward QMF Filter

x(n)

H0(z)

H1(z)

2

2

x0(n)

Forward QMF Filter

x1(n)

H̃0 z( ) z N– H0 z 1–( )=

H1
˜ z( ) z N– H1 z 1–( )=
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The forward QMF computation (default) uses the first half of Figure 2-32. A QMF
filter H(z) and an input signal x are used to compute the two output signals x0(n)
and x1(n). The backward QMF computation uses the second half of Figure 2-32.
The backward, or inverse operation uses a QMF filter H(z) and two input signals
x0(n) and x1(n) to compute the output signal y(n).

CAUTION QMF does not verify that the filter passed to it is actually a perfect
reconstruction QMF. However, if the filter was created using QMFDESIGN and
the Caution note on page 181 in the Discussion is followed, the filter will be a
perfect reconstruction.

Example

This example illustrates how a QMF is designed and then applied to a simple sine
wave signal.

k = [1, 4, 6, 4, 1]

h = QMFDESIGN(k)

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), Title = ’Quadrature Mirror Filter’, $
XTitle = ’Frequency’, YTitle = ’Magnitude’

; Plot the designed QMF (Figure 2-33).

Figure 2-33 Frequency response of the quadrature mirror filter.

x = SIN(0.05*!Pi*FINDGEN(100))
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n = N_ELEMENTS(x)

; Generate a test signal.

QMF, h, x, n, x0, x1

; Forward QMF operation.

!P.Multi = [0, 1, 2]

PLOT, x0, Title =$
’Lowpass filtered and decimated signal’

PLOT, x1, Title =$
’Highpass filtered and decimated signal’

; Plot the output signals (Figure 2-34).

QMF, h, y, n, x0, x1, /Backward

; Backward QMF operation.

PM, MAX(ABS(x-y)), Title = $
’Maximum Reconstruction Error’

Maximum Reconstruction Error
4.4408921e-15

Figure 2-34 The original signal is forward processed with the QMF (Figure 2-33) to produce
(a) x0(n), the lowpass filtered and decimated signal, and (b) x1(n), the highpass filtered and
decimated signal.

See Also

FILTDOWN, FILTUP, QMFDESIGN

(a)

(b)
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For Additional Information

Akansu and Haddad, 1992.

Vaidyanathan, 1993.

QMFDESIGN Function
Designs a finite impulse response (FIR) quadrature mirror filter (QMF).

Usage

result = QMFDESIGN(k)

Input Parameters

k — An array containing the coefficients of a known polynomial factor of the
desired QMF.

Returned Value

result — A filter structure containing the coefficients of the QMF. If the known
polynomial factor K(z) has order M , the QMF filter has an order that is ≤ 2M – 1.

Keywords

None.

Discussion

A quadrature mirror filter H(z) is defined by the equation

H(z)2 + H(–z)2 = 1 .

Given a known factor K(z) of H(z), QMFDESIGN finds the factor U(z) so that H(z)
= K(z)U(z) satisfies the QMF equation above.

The algorithm used to solve this problem first solves the equation

K(z)2X(z) + K(–z)2X(–z) = zM

for X(z) using the Euclid algorithm discussed in Demeure and Mullis (1989). Next,
a spectral factorization of X(z) is performed to obtain
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X(z) = U(z)U(z–1) using the algorithm discussed in Demeure and Mullis (1990).
Finally, the QMF H(z) is determined as H(z) = K(z)U(z).

By choosing

K(z) = (1 + z–1)M

QMFDESIGN generates the Daubechies, compactly supported, orthonormal
wavelet with M vanishing moments.

Another common choice is to select K(z) so that it has all its zeros on the unit circle
in the left half-plane to approximate the ideal half-band lowpass filter.

CAUTION The polynomial K(z) must be chosen so that K(z) and
K(–z) are co-prime, and X(z) is positive on the unit circle. If K(z) and K(–z) are not
co-prime, a message saying, Input polynomials are not co-prime appears. If X(z) is
not positive, a message saying, Newton-Raphson iterations did not converge
appears.

Example

In this example, the Daubechies QMF is designed with 3-zeros and
z = – 1.

k = [1, 3, 3, 1]

; The coefficients of the polynomial K(z) = (1+z-1)3.

h = QMFDESIGN(kz)

; Design the quadrature mirror filter.

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), $
Title = ’Daubechies QMF Magnitude’, $
XTitle = ’Frequency’

; Plot the filter magnitude response versus frequency
; (Figure 2-35).
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Figure 2-35 Magnitude response of a Daubechies quadrature mirror filter.

See Also

QMF

For Additional Information

Akansu and Haddad, 1992.

Daubechies, 1992.

Demeure and Mullis, 1990.

Duell, 1994.

Vaidyanathan, 1993.
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QUADPROG Function
Solves a quadratic programming (QP) problem subject to linear equality or ine-
quality constraints.

Usage

result = QUADPROG(a, b, g, h)

Input Parameters

a — A two-dimensional matrix containing the linear constraints.

b — A one-dimensional matrix of the right-hand sides of the linear constraints.

g — A one-dimensional array of the coefficients of the linear term of the objective
function.

h — A two-dimensional array of size N_ELEMENTS(g)-by-N_ELEMENTS(g)
containing the Hessian matrix of the objective function. The array must be sym-
metric positive definite. If h is not positive definite, the algorithm attempts to solve
the QP problem with h replaced by h + diag*1, such that h + diag*1 is positive
definite.

Returned Value

result —The solution to the QP problem.

Keywords

Diag — The name of the variable into which the scalar, equal to the multiple of the
identity matrix added to h to give a positive definite matrix, is stored.

Double — If present and nonzero, double precision is used in the computation.

Dual — The name of the variable into which an array with N_ELEMENTS(g) ele-
ments, containing the Lagrange multiplier estimates, is stored.

Meq — The number of linear equality constraints. If Meq is used, the equality con-
straints are located at A (i, *) for i = 0, …, Meq – 1.
(Default: Meq = N_ELEMENTS(A (*, 0) ) n; i.e., all constraints are equality
constraints)

Obj — The name of the variable into which the optimal object function is stored.
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Discussion

QUADPROG is based on M.J.D. Powell’s implementation of the Goldfarb and
Idnani dual quadratic programming (QP) algorithm for convex QP problems sub-
ject to general linear equality/inequality constraints (Goldfarb and Idnani, 1983).
These problems are of the form

subject to

A1x = b1

A2x ≥ b2

given the arrays b0, b1, and g, and the matrices H, A0, and A1. Matrix H is required
to be positive definite. In this case, a unique x solves the problem, or the constraints
are inconsistent. If H is not positive definite, a positive definite perturbation of H
is used in place of H . For more details, see Powell (1983, 1985).

If a perturbation of H, H + αI, is used in the QP problem, H + αI also should be
used in the definition of the Lagrange multipliers.

Example

The QP problem

min f(x) = x0
2 + x1

2 + x2
2 + x3

2 + x4
2 – 2x1x2 – 2x3x4 –2x0

subject to

x0 + x1 + x2 + x3 + x4 = 5

x2 – 2x3 – 2x4 = –3

is solved.

min gT x
1
2
---xT Hx+

x IRn∈
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RM, a, 2, 5

row 0: 1 1 1 1  1

row 1: 0 0 1 -2 -2

; Define the coefficient matrix A.

h = [[2, 0, 0, 0, 0], [0, 2, -2,  0, 0], $
[0, -2, 2, 0, 0], [0, 0, 0, 2, -2], $
[0, 0, 0, -2, 2]]

; Define the Hessian matrix of the objective function. Notice
; that since h is symmetric, the array concatenation
; operators “[ ]” are used in its definition.

b = [5, -3]

g = [ -2, 0, 0, 0, 0]

x = QUADPROG(a, b, g, h)

PM, x

1.00000

1.00000

1.00000

1.00000

1.00000

For Additional Information

Goldfarb and Idnani, 1983.

Powell, 1983 and 1985.

RANDOM Function
Generates pseudorandom numbers. The default distribution is a uniform (0, 1) dis-
tribution, but many different distributions can be specified through the use of
keywords.

Usage

result = RANDOM(n)

Input Parameters

n — Number of random numbers to generate.
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Returned Value

result — A one-dimensional array of length n containing the random numbers. If
the keywords Mvar_Normal and Covariances are used, then a two-dimensional
array is returned.

Keywords

A — Shape parameter of the Gamma distribution. Keyword A must be positive.
Keywords A and Gamma both must be specified to force RANDOM to return ran-
dom numbers from a Gamma distribution.

Beta — If present and nonzero, the random numbers are generated from a beta dis-
tribution. Keywords Beta, Pin, and Qin all must be specified to force RANDOM to
return numbers from a beta distribution.

Covariances — Two-dimensional, square matrix containing the variance-covari-
ance matrix. The two-dimensional array returned by RANDOM is of the following
size:

n-by-N_ELEMENTS(Covariances(*, 0))

Keywords Mvar_Normal and Covariances must be specified to return numbers
from a multivariate normal distribution.

Double — If present and nonzero, double precision is used.

Exponential — If present and nonzero, the random numbers are generated from a
standard exponential distribution.

Gamma — If present and nonzero, the random numbers are generated form a stan-
dard Gamma distribution. Keywords Gamma and A both must be specified to force
RANDOM to return random numbers from a Gamma distribution.

Mvar_Normal — If present and nonzero, the random numbers are generated from
a multivariate normal distribution. Keywords Mvar_Normal and Covariances must
be specified to return numbers from a multivariate normal distribution.

Normal — If present and nonzero, the random numbers are generated from a stan-
dard normal distribution using an inverse CDF method.

Pin — First parameter of the beta distribution. Keyword Pin must be positive. Key-
words Pin, Qin, and Beta all must be specified to force RANDOM to return
numbers from a beta distribution.
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Poisson — If present and nonzero, the random numbers are generated from a Pois-
son distribution. Keywords Poisson and Theta both must be specified to force
RANDOM to return random numbers from a Poisson distribution.

Qin — Second parameter of the beta distribution. Keyword Qin must be positive.
Keywords Qin, Pin, and Beta all must be specified to force RANDOM to return
numbers from a beta distribution.

Theta — Mean of the Poisson distribution. Keyword Theta must be positive. Key-
words Theta and Poisson both must be specified to force RANDOM to return
random numbers from a Poisson distribution.

Uniform — If present and nonzero, the random numbers are generated from a uni-
form (0, 1) distribution. The default action of this returns random numbers from a
uniform (0, 1) distribution.

Discussion

RANDOM returns random numbers from any of a number of different distribu-
tions. The determination of which distribution to generate the random numbers
from is based on the presence of a keyword, or group of keywords. If RANDOM
is called without any keywords, then random numbers from a uniform (0, 1) distri-
bution are returned.

Uniform (0,1) Distribution

The default action of RANDOM generates pseudorandom numbers from a uniform
(0, 1) distribution using a multiplicative, congruent method. The form of the gen-
erator follows:

xi ≡ cxi–1mod(231–1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by using
the RANDOMOPT procedure with the Gen_Option keyword. The choice of 16807
results in the fastest execution time. If no selection is made explicitly, the functions
use the multiplier 16807.

The RANDOMOPT procedure (page 192) called with the Set keyword is used to
initialize the seed of the random-number generator.

You can select a shuffled version of these generators. In this scheme, a table is filled
with the first 128 uniform (0,1) numbers resulting from the simple multiplicative
congruent generator. Then, for each xi from the simple generator, the low-order bits
of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table
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is then delivered as the random number, and xi, after being scaled into the unit inter-
val, is inserted into the j-th position in the table.

The values returned are positive and less than 1.0. Some values returned may be
smaller than the smallest relative spacing; however, it may be the case that some
value, for example r(i), is such that
1.0 – r(i) = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output.

Normal Distribution

Calling RANDOM with keyword Normal generates pseudorandom numbers from
a standard normal (Gaussian) distribution using an inverse CDF technique. In this
method, a uniform (0, 1) random deviate is generated. Then, the inverse of the nor-
mal distribution function is evaluated at that point using the PV-WAVE function
NORMALCDF with keyword Inverse.

Deviates from the normal distribution with mean specific mean and standard devi-
ation can be obtained by scaling the output from RANDOM.

Exponential Distribution

Calling RANDOM with keyword Exponential generates pseudorandom numbers
from a standard exponential distribution. The probability density function is f(x) =
e–x, for x > 0. RANDOM uses an antithetic inverse CDF technique. In other words,
a uniform random deviate U is generated, and the inverse of the exponential cumu-
lative distribution function is evaluated at 1.0 – U to yield the exponential deviate.

Poisson Distribution

Calling RANDOM with keywords Poisson and Theta generates pseudorandom
numbers from a Poisson distribution with positive mean Theta. The probability
function (with θ = Theta) follows:

f(x) = (e–θθx)/x! , for x = 0, 1, 2, ...

If Theta is less than 15, RANDOM uses an inverse CDF method; otherwise, the
PTPE method of Schmeiser and Kachitvichyanukul (1981) is used. (See also
Schmeiser, 1983.) The PTPE method uses a composition of four regions, a triangle,
a parallelogram, and two negative exponentials. In each region except the triangle,
acceptance/rejection is used. The execution time of the method is essentially insen-
sitive to the mean of the Poisson.
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Gamma Distribution

Calling RANDOM with keywords Gamma and A generates pseudorandom num-
bers from a Gamma distribution with shape parameter a = A and unit scale
parameter. The probability density function follows:

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates
are used; for the special case of a = 1.0, exponential deviates are generated. Other-
wise, if a is less than 1.0, an acceptance-rejection method due to Ahrens, described
in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a 10-region rejection
procedure developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard Gamma distribution with the shape parameter
having a value equal to a positive integer; hence, RANDOM generates pseudoran-
dom deviates from an Erlang distribution with no modifications required.

Beta Distribution

Calling RANDOM with keywords Beta, Pin, and Qin generates pseudorandom
numbers from a beta distribution with parameters Pin and Qin, both of which must
be positive. With p = Pin  and q = Qin, the probability density function is

where Γ( ⋅) is the Gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases
of p = 1 or q = 1, in which the inverse CDF method is used, all the methods use
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is
used. If either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB of Cheng
(1978), which requires very little setup time, is used if x is less than 4, and algo-
rithm B4PE of Schmeiser and Babu (1980) is used if x is greater than or equal to 4.

NOTE Note that for p and q both greater than 1, calling RANDOM to generate
random numbers from a beta distribution a loop getting less than four variates on

f x( )
1

Γ a( )
----------xa 1– e x–= for x 0≥

f x( )
Γ p q+( )
Γ p( )Γ q( )
----------------------xp 1– 1 x–( )q 1–=
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each call yields the same set of deviates as executing one call and getting all the
deviates at once.

The values returned are less than 1.0 and greater than ε, where ε is the smallest pos-
itive number such that 1.0 – ε < 1.0.

Multivariate Normal Distribution

Calling RANDOM with keywords Mvar_Normal and Covariances generates pseu-
dorandom numbers from a multivariate normal distribution with mean array
consisting of all zeros and variance-covariance matrix defined using keyword
Covariances. First, the Cholesky factor of the variance-covariance matrix is com-
puted. Then, independent random normal deviates with mean zero and variance 1
are generated, and the matrix containing these deviates is post-multiplied by the
Cholesky factor. Because the Cholesky factorization is performed in each
invocation, it is best to generate as many random arrays as needed at once.

Deviates from a multivariate normal distribution with means other than zero can be
generated by using RANDOM with keywords Mvar_Normal and Covariances,
then adding the arrays of means to each row of the result.

Example

In this example, RANDOM is used to generate five pseudorandom, uniform num-
bers. Since RANDOMOPT is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.

RANDOMOPT, Set = 123457

; Set the random seed.

r = RANDOM(5)

; Compute the random numbers.

PM, r

0.966220

0.260711

0.766262

0.569337

0.844829

See Also

RANDOMOPT

In the PV-WAVE Reference:
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NORMALCDF

For Additional Information

Ahrens and Dieter, 1974.

Atkinson, 1979.

Cheng, 1978.

Schmeiser, 1983.

Schmeiser and Babu, 1980.

Schmeiser and Lal, 1980.

Schmeiser and Kachitvichyanukul, 1981.

RANDOMOPT Procedure
Sets or retrieves the random number seed to select the uniform (0, 1) multiplicative,
congruential pseudorandom-number generator.

Usage

RANDOMOPT

Input Parameters

Procedure RANDOMOPT does not have any positional input parameters. Key-
words are required for specific actions to be taken.

Keywords

Gen_Option — An indicator of the generator. The random-number generator is a
multiplicative, congruential generator with modulus 231 – 1. Keyword Gen_Option
is used to choose the multiplier and to determine whether or not shuffling is done.

Random Number Generator Options

Gen_Option Generator

1 multiplier 16807 used (default)
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Get — A named variable into which the value of the current random-number seed
is stored.

Set — The seed of the random-number generator. The seed must be in the range
(0, 2147483646). If the seed is zero, a value is computed using the system clock;
hence, the results of programs using the random-number generators are different at
various times.

Discussion

RANDOMOPT is designed to allow you to set certain key elements of the random-
number generator function RANDOM.

The uniform pseudorandom-number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier and whether or not
to use shuffling are determined by keyword Gen_Option. The description of func-
tion RANDOM may provide some guidance in the choice of the form of the
generator. If no selection is made explicitly, the generators use the multiplier 16807
without shuffling. This form of the generator has been in use for some time
(Lewis et al. 1969).

Keyword Set is used to initialize the seed used in the random-number generators.
The form of the generators follows:

xi = cxi – 1 mod (231 – 1) .

The value of x0 is the seed. If the seed is not initialized prior to invocation of any
of the routines for random-number generation by calling RANDOMOPT, the seed
is initialized via the system clock. The seed can be re-initialized to a clock-depen-
dent value by calling RANDOMOPT with Set set to zero.

A common use of keyword Set is in conjunction with the keyword Get to restart a
simulation. Keyword Get retrieves the current value of the “seed” used in the ran-
dom-number generators.

2 multiplier 16807 used with shuffling

3 multiplier 397204094 used

4 multiplier 397204094 used with shuffling

5 multiplier 950706376 used

6 multiplier 950706376 used with shuffling

Random Number Generator Options

Gen_Option Generator
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Example

This example illustrates the statements required to restart a simulation using the
keywords Get and Set. The example shows that restarting the sequence of random
numbers at the value of the last seed generated is the same as generating the random
numbers all at once.

seed = 123457

nrandom = 5

RANDOMOPT, Set = seed

; Set the seed using the keyword Set.

r1 = RANDOM(nrandom)

PM, r1, Title = ’First Group of Random Numbers’

First Group of Random Numbers

0.966220

0.260711

0.766262

0.569337

0.844829

RANDOMOPT, Get = seed

; Get the current value of the seed using the keyword Get.

RANDOMOPT, Set = seed

r2 = RANDOM(nrandom)

PM, r2, Title = ’Second Group of Random Numbers’

Second Group of Random Numbers

0.0442665

0.987184

0.601350

0.896375

0.380854

RANDOMOPT, Set = 123457

; Reset the seed to the original seed.

r3 = RANDOM(2 * nrandom)

PM, r3, Title = ’Both Groups of Random Numbers’

Both Groups of Random Numbers
0.966220
0.260711
0.766262
0.569337
0.844829
0.0442665
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0.987184
0.601350
0.896375
0.380854

See Also

RANDOM

For Additional Information

Lewis, Goodman and Miller, 1969

REFLINES Procedure
Produces reference lines on a frequency response graph.

Usage

REFLINES, x

Input Parameters

x — A one-dimensional array of the frequencies on the x-axis where reference lines
are to be drawn.

Keywords

None.

Discussion

REFLINES is particularly useful for displaying cutoff frequencies on an existing
frequency response plot. For each value in the input array, one vertical line is drawn
from the x-axis to the maximum y value. The lines are drawn in color 55, which is
dependent on the currently loaded color table.

Example

In this example, a single bandpass filter is plotted, and the band edges are drawn
using REFLINES.
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h = FIRDESIGN(FIRWIN(101, /Blackman), 0.4, 0.6, $
/Bandpass)

; Approximate an ideal bandpass filter with normalized band
; edges at 0.4 and 0.6 using a Blackman window.

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf)

; Plot the magnitude of the frequency response (Figure 2-36).

LOADCT, 12

; Load the 16 level color table so the reference lines appear green.

REFLINES, [0.4, 0.6]

; Draw reference lines at the band edge frequencies
; (see Figure 2-36).

Figure 2-36 Use of reference lines to indicate the edge frequencies of a bandpass filter.
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REMEZ Function
Designs an optimal linear phase FIR digital filter using the Remez exchange
algorithm.

Usage

result = REMEZ(nfilt, ftype, edge, fx, wtx [, lgrid][, iters])

Input Parameters

nfilt — (scalar) The filter length.

ftype — (scalar) The type of filter. Set ftype to 1 for multiple passband/stopband,
2 for differentiator, 3 for Hilbert transformer.

edge — A one-dimensional floating point array specifying the upper and lower cut-
off frequencies, up to a maximum of ten bands.

fx — A one-dimensional floating point array of length N_ELEMENTS(edge)/2
containing the desired frequency response in each band.

wtx — A one-dimensional floating point array of length N_ELEMENTS(edge)/2
containing the positive weight function for each band.

lgrid — (optional) A scalar value to set grid density. (Default: lgrid = 16)

iters — (optional) A scalar number between 1 and 25 indicating the maximum
number of iterations within the REMEZ exchange algorithm. (Default: iters = 25)

Output Parameters

iters — (optional) The number of iterations within the REMEZ exchange algo-
rithm. On output, iters is a scalar value containing the actual number of iterations
used.

Returned Value

result — A filter structure containing the impulse response of the optimal filter.

Keywords

None.
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Discussion

Given a desired magnitude response

F(ejθ) ,

this function uses Parks’ and McClellan’s variation of the Remez exchange algo-
rithm to find a linear phase FIR filter

H(ejθ) , such that

which approximates the desired magnitude response.

The approximation criteria is to minimize the weighted Chebyshev error given by

,

where W(ejθ) is a positive weight function.

The specific implementation of this function is based on the algorithm in McClel-
lan, Parks, and Rabiner, 1979. This numerical implementation utilizes samples of
the functions F(ejθ) and W(ejθ) given by

e jθ( ) hke jkθ–

k 0=

K 1–

∑= θ πf=

ax

θ
W e jθ( ) F e jθ( ) H e jθ( )–
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and

as the input arguments for the frequencies specified by

edge = [f0, f1, ..., f2N]

The frequency points must be between 0 and 1, where 1 is the Nyquist frequency.
The frequencies must have increasing order.

The value of  and

defines the desired magnitude response and weight function for the interval (fk,
fk+1) for k = 0, 2, 4, .... The values of the magnitude response and weight function
for the intervals (fk, fk+1) for k = 1, 3, 5, ... are undefined and are so-called “don’t
care” regions.

If ftype = 1, REMEZ designs Type 1 and Type 2 linear phase FIR filters when nfilt
is odd or even, respectively. (See FIRLS for the four types of linear phase filters.)

If ftype = 3, REMEZ designs Type 3 and Type 4 linear phase FIR filters when nfilt
is odd or even, respectively.

If ftype = 2, REMEZ also designs Type 3 and Type 4 linear phase FIR filters when
nfilt is odd or even, respectively, but the values of fx and wx are treated differently.
The values of fx(k) specify the slope of the desired frequency response

on the interval (fk, fk+1) and the values of wx(k) specify the weight function evalu-
ated as

.

f x F e
jπ f 0( ) F e

jπ f 2( ) F e
jπ f 4( ) … F e

jπ f N( ), , , ,[ ]=

wx W e
jπ f 0( ) W e

jπ f 2( ) W e
jπ f 4( ) … W e

jπ f N( ), , , ,[ ]=

e
jπ f k( ) e

jπ f k( )

e
jπ f k( )

1

e
jπ f k( )

--------------------
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In the solution, the values of  and

are interpolated onto a dense grid of points proportional to lgrid * nfilt/2. The
default value of lgrid is 16.

The linear phase filter coefficients are returned in a filter structure

where m = nfilt – 1.

Example

In this example, REMEZ is used to compute a multiband filter.

nfilt = 55

ftype = 1

edge = [.00, .10, .20, .30, .36, .50, .60, .72, $
.82, 1.00]

fx = [0, 1., 0, 1., 0]

wtx = [10.0, 1., 3., 1., 20.]

h = REMEZ(nfilt, ftype, edge, fx, wtx)

PLOT, FINDGEN(512)/511, ALOG(ABS(FREQRESP_Z(h))), $
XStyle = 1, Title = $
’Log magnitude response of multiband filter’

; Plot the filter response (Figure 2-37).

OPLOT, [0, 1], [0, 0], COLOR = .5*!D.N_Colors

OPLOT, FINDGEN(512)/511,ALOG(ABS(FREQRESP_Z(h)))

e
jπ f k( ) e

jπ f k( )

H z( )
b0 b1z 1– b2z 2– ... bmz m–+ + + +

1
----------------------------------------------------------------------------=
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Figure 2-37 Log magnitude response of a multiband filter designed using REMEZ.

For Additional Information

McClellan, Parks, Rabiner, 1979

Oppenheim and Schafer, 1989, section 7.6.

ROOT2POLY Function
Forms a polynomial from a given set of roots.

Usage

result = ROOT2POLY(r)

Input Parameters

r — A one-dimensional array or scalar containing the polynomial roots.

Returned Value

result — A one-dimensional array containing the coefficients of the polynomial.
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Keywords

None.

Discussion

Given a set of roots r0, r1, r2, ..., rN, ROOT2POLY determines the coefficients of
the polynomial A(x) where A(x) is given by

 = a0 + a1x + a2x2 + ... + aNxN , aN = 1 .

ROOT2POLY always returns a polynomial with aN normalized to 1.

Example

In this example, ZEROPOLY is used to first compute the roots of the polynomi-
alA(x) given by

A(x) = 3 + 2x + 12x2 + 4x3 + x4 .

ROOT2POLY is then used to reproduce A(x) from its roots.

A = [3, 2, 12, 4, 1]

r = ZEROPOLY(A)

PM, ROOT2POLY(r), Format = ’(f10.1)’

3.0

2.0

12.0

4.0

1.0

See Also

ZEROPOLY

A x( ) x ri–( )
i 0=

N

∏=
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SCHURCOHN Function
Determines if a filter polynomial is stable using the Schur-Cohn stability test.

Usage

result = SCHURCOHN(a [, epsilon])

Input Parameters

a — The array of coefficients of the filter polynomial.

epsilon — (optional) A value used to numerically determine if the reflection coef-
ficients equal one. (Default: [machine epsilon]1/2 . It may be set to zero.)

Returned Value

result — A scalar that equals zero if the polynomial is unstable, or one if the poly-
nomial is stable.

Keywords

None.

Discussion

SCHURCOHN determines if the roots of a filter polynomial:

A(z) = a0 + a1z–1 + a2z–2 + ... + aNz–N

have magnitude less than one. This is accomplished by performing the Schur-Cohn
stability test on the polynomial. The test first computes the reflection coefficients
of the polynomial. If the magnitude of the reflection coefficients are all less than
one then the polynomial is stable.

In this numerical implementation of the Schur-Cohn stability test, the magnitude
of the reflection coefficients are tested to see if they are less than 1 – epsilon. As an
option, you may change the value of epsilon. (Default: epsilon = (machine epsi-
lon)1/2 ).
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Example

In this example, two filter polynomials (one stable and the other unstable) are gen-
erated, and then SCHURCOHN is used to test their stability.

a1 = P_MULT([1, 0.5], [1, 0.3])

; The stable polynomial a1 = (1 + 0.5 z – 1) (1 + 0.3 z – 1).

PM, SCHURCOHN(a1), Title = ’Result of ’+ $
’SCHURCOHN for Stable Filter Polynomial’

Result of SCHURCOHN for Stable Filter Polynomial
1

a2 = P_MULT([1, 0.5], [1, 1.0/0.3])

; The unstable polynomial a2 = (1 + 0.5 z – 1) (1 + (1.0/0.3) z – 1).

PM, SCHURCOHN(a2), Title = $
’Result of SCHURCOHN for Unstable Filter Polynomial’

Result of SCHURCOHN for Unstable Filter Polynomial
0

For Additional Information

Proakis and Manolakis, 1992, pp. 288 - 289.

Roberts and Mullis, 1987, p. 527.

SGFDESIGN Function
Designs a finite impulse response (FIR) Savitsky-Golay filter.

Usage

result = SGFDESIGN(m, l)

Input Parameters

m — The length of the filter.

l — The number of moments preserved by the filter.
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Returned Value

result — A filter structure containing the coefficients of the FIR filter.

Keywords

None.

Discussion

SGFDESIGN designs optimal linear phase FIR filters for estimating the signal s(n)
from the noise-corrupted observation

x(n) = s(n) + e(n) ,

where the noise e(n) is an independent, identically distributed random variable.

The coefficients of the FIR filter

are chosen so that the signal estimate

satisfies two properties. First, the filter minimizes the error

E[bn*e(n)]2

where the operation E  denotes the mathematical expectation. Second, the
moments of the signal s(n) are conserved up to a desired order L.

The moment constraints can be equivalently stated as requiring the filter coeffi-
cients bn to satisfy

and

H z( )
b0 b1z 1– b2z 2– ... bmz m–+ + + +

1
----------------------------------------------------------------------------=

y n( ) bn*x n( ) x k( )bk n–
k

∑= =

bn
n

∑ 1=
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, l = 1, 2, ..., L.

This filter is most often used in the physical sciences for smoothing experimental
data.

Example

This example illustrates the design of a Savitzky-Golay filter.

h = SGFDESIGN(15, 4)

; Design the filter.

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, ABS(hf), Title =$
’Savitzky-Golay Filter Magnitude’, $
XTitle = ’Frequency’

; Plot the magnitude of the frequency response (Figure 2-38).

Figure 2-38 Magnitude response of a Savitzky-Golay filter.

For Additional Information

Schussler and Steffen, 1988, Section 8.3.2, pp. 441-443.

nlbn
n

∑ 0=
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Savitsky and Golay, 1964.

Steiner, Termonia and Deltour, 1972.

SIGNAL Function
Computes a variety of standard signals, including a square wave, sine wave, cosine
wave, sawtooth wave, random waves, and the periodic sinc or Dirichlet function.

Usage

result = SIGNAL(n, keyword)

Input Parameters

n — The number of values to compute. The parameter n must be greater than 2.

keyword — Exactly one keyword must be set to select the wave type.

Returned Value

result — A one-dimensional array containing the requested signal.

Keywords

Cosine — If present and nonzero, generates a wave using the cosine function.

Diric — If present and nonzero, generates a wave using the periodic sinc or
Dirichlet function.

Norm_random — If present and nonzero, generates a wave using a random normal
distribution.

Periods — A scalar value specifying the number of periods to compute for the
desired signal.

Sawtooth — If present and nonzero, generates a wave using the sawtooth function
with period 2π. If Sawtooth is set to a value in the closed interval [0, 1], the peak
of the wave occurs at (Sawtooth*2*!Pi). For example,

Sawtooth = 0.0, results in a pure sawtooth waveform (pulse up, ramp
down).

Sawtooth = 0.5, results in a triangle waveform (ramp up, ramp down).



208  Chapter 2: Reference PV-WAVE:Signal Processing User’s Guide

Sawtooth = 1.0, results in a pure ramp waveform (ramp up, pulse down).

Sine — If present and nonzero, generates a wave using the sine function.

Square — If present, generates a wave using the square function. The value of
Square specifies the percent of the wave that is positive. Thus, setting Square = 0.5
results in a one-dimensional array in which (n +1)/2 elements are equal to 1, and n/
2 elements are equal to –1.

Unif_random — If present and nonzero, generates a wave using a random uniform
distribution.

Discussion

The standard definition of each keyword signal is used to compute the period of the
desired signal. Specifically, for a given value of n, compute t, such that t = DIND-
GEN(n)/n.

The following definitions are used.

• Sine wave — SIN(Periods*2π*t)

• Cosine wave — COS(Periods*2π*t)

• Random Uniform wave — RANDOM(n, /Uniform)

• Random Normal wave — RANDOM(n, /Normal)

• Square wave — A square wave with a maximum value of 1, and a minimum of
–1. The value of the keyword Square defines the percent of the wave equal to 1.

• Sawtooth wave — A sawtooth wave with an adjustable peak location based on
the value of Sawtooth.

• Periodic sinc, or Dirichlet wave —
If t = 2*!Pi*k, then Diric = (–1)(k*n–1),
otherwise Diric = SIN(n*x/2) / (n*SIN(x/2).

Example

In this example, SIGNAL is used to generate each of the seven types of signal plots.

!P.Multi = [0, 2, 4]

!P.Charsize = 2

n = 500

p = 3

PLOT, SIGNAL(n, /Sine, Periods = p), Title = ’Sine’
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PLOT, SIGNAL(n, /Cosine, Periods = p), Title = $
’Cosine’

PLOT, SIGNAL(n, Square = .75, Periods = p), $
Title = ’Square’, YRange = [-1.5, 1.5]

PLOT, SIGNAL(n, Sawtooth = .25, Periods = p), $
Title = ’Sawtooth’

PLOT, SIGNAL(n, /Unif_random), Title = $
’Random Uniform’

PLOT, SIGNAL(n, /Norm_random), Title = $
’Random Normal’

PLOT, SIGNAL(n, Diric = 24, Periods = p), Title =$
’Periodic sinc, or Dirichlet’

; The seven plots are shown in Figure 2-39. Note that the periodic
; signal plot (Sine, Cosine, Square, Sawtooth and Diric) each show
; three periods of the signal by using the keyword Periods in the
; calling sequence.

Figure 2-39 Sample signals produced using SIGNAL.

See Also

SINC
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SINC Function
Computes the sine of the input divided by the input.

Usage

result = SINC(x)

Input Parameters

x — The value at which sin(x)/x  is evaluated.

Returned Value

result — The sine of the input divided by the input.

Keywords

None.

Discussion

SINC computes sin(x)/x for all . Specifically,

,

where ε = (machine precision)1/2.

The SINC function is used in the sampling theorem in the frequency domain of the
Fourier integral.

Example

In this example SINC is computed for x = 0, 1, and π.

x = [0.0, 1.0, !Pi]

PM, SINC(x)

1.0000000

0.84147098

-2.7827534e-08

See Also

SIGNAL

x IR∈

SINC x( )
x( )sin x⁄ x ε≥
1 x ε<

=
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SPECTROGRAM Function
Computes the spectrogram of a data sequence.

Usage

result = SPECTROGRAM(x [, length][, overlap])

Input Parameters

x — A one-dimensional array containing the data sequence from which the spec-
trogram will be computed.

length — (optional) The length of the subsections of x on which to operate.

overlap — (optional) The number of elements overlapped by successive subsec-
tions of x. (Default: 0.75*length)

Returned Value

result — A two-dimensional array containing the spectrogram of x.

Keywords

Padding — If present and nonzero and greater than length, subsections of x are
padded with the specified number of zeros.

Print_info — If present and nonzero, the number and length of subsections of x are
output.

Window_param — The window parameter for a Kaiser window.

Window_type — A scalar value indicating the type of window to use when com-
puting the spectrum of subsections of x. See page 71 (the FIRWIN discussion) for
a list of available values and window types.

Discussion

The spectrogram is a useful tool for displaying the time-dependent frequency con-
tent of a signal. It is also referred to as a Gabor transform, short-time Fourier
transform, or waterfall plot.

The spectrogram is determined by breaking the data sequence into length N over-
lapping data segments represented as
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x(n) = x(n + iR),  for n = 0, 1, ..., N –1

i = 0, 1, ..., I –1

where R = (N – overlap).

A power spectrum of each data segment is then determined using SPECTRUM.
The power spectrum for each data segment is stored as a matrix, with the first index
representing the data segment and the second index representing uniform samples
of the power spectrum.

The spectrogram is typically displayed as an image with the magnitude of the
power spectrum represented by the grey (or color) scale.

Example

In this example, SPECTROGRAM is used on a file containing a signal of a human
voice (Figure 2-40).

(UNIX) To open the file on a UNIX system:

OPENR, u, GETENV(’VNI_DIR’)+ $
’/sigpro-1_1/test/voice.dat’, /Get_Lun

(OpenVMS) To open the file on an OpenVMS system:

OPENR, u, GETENV(’VNI_DIR’)+ $
’[SIGPRO-1_1.TEST]VOICE.DAT’, /Get_Lun

(Windows) To open the file on a Windows system:

OPENR, u, GETENV(’VNI_DIR’)+ $
’\sigpro-1_1\test\voice.dat’, /Get_Lun

x = BYTARR(7519)

READU, u, x

CLOSE, u

xs = 400

ys = 400

WINDOW, XSize = xs, YSize = ys

PLOT, x, Position = [0, .5, 1, 1], $
XStyle = 5, YStyle = 5, /Normal

; Plot the original voice signal (Figure 2-40 (a)).

mat = SPECTROGRAM(x, 256)

; Compute spectrogram of the original signal.

TVSCL, Hist_Equal(CONGRID(ALOG10(mat > 1.e-5),$
xs, ys/2))
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; Display the spectrogram as an image (Figure 2-40 (b)).

Figure 2-40 A voice signal (a) is processed with SPECTROGRAM and displayed in
PV-WAVE as an image (b).

See Also

SPECTRUM, WAVELET

For Additional Information

Nawab and Quatieri, 1988.

Oppenheim and Schafer, 1975.

(a)

(b)



214  Chapter 2: Reference PV-WAVE:Signal Processing User’s Guide

SPECTRUM Function
Estimates the power spectrum (power spectral density) of a data sequence.

Usage

result = SPECTRUM(x, length [, overlap])

Input Parameters

x — A one-dimensional array containing the sequence from which the power spec-
trum will be computed.

length — The length of the subsections of x on which to operate. (Default:
N_ELEMENTS(x)/5)

overlap — (optional) The number of elements the successive subsections of x will
overlap. (Default: 0.5*length)

Returned Value

result — A one-dimensional array containing the power spectrum of x.

Keywords

Padding — If present and nonzero and greater than length, the subsections of x are
padded with the specified number of zeros.

Print_info — If present and nonzero, returns the number and length of subsections
of x.

Window_param — Window parameter for a Kaiser window.

Window_type — A scalar value indicating the type of window to use when com-
puting the spectrum of subsections of x. See page 71 (the FIRWIN discussion) for
the list of values and window types available.

Discussion

SPECTRUM computes one of several different power spectrum estimates P(f)
depending on the input parameters. Specific estimates available include the peri-
odogram, the modified periodogram, Bartlett’s method, and Welch’s method. In all
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cases uniform samples of the power spectrum are returned. If the parameter length
= L, the frequency sample values are

fk = k/L , k = 0, 1, ..., M  for real data.

where M = [(L + 2)/2]  for L even and M = [(L + 1)/2] for L odd for real data.

For complex data, M = L.

The periodogram is defined as

,

where the frequency variable f is normalized to the Nyquist frequency of 1.0. To
obtain uniform samples of the periodogram using SPECTRUM, set length equal to
the length of the data x, and set Window_type to rectangular.

The modified periodogram is defined as

,

where w(l) is a data window sequence. To obtain uniform samples of the modified
periodogram using SPECTRUM, set length equal to the length of the data x and set
Window_type to any of the windows discussed in FIRWIN (page 70).

Bartlett’s method breaks the data into non-overlapping data segments represented
as

xi(n) = x(n + iL) n = 0, 1, ... , L – 1 i = 0, 1, ... , I – 1.

A periodogram

is computed for each data segment and averaged to obtain the
Bartlett estimate

.

p f( )
1
L
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To obtain uniform samples of Bartlett’s estimate using SPECTRUM, set length to
be less than the data length, set overlap to 0 and set Window_type to rectangular.

The Welch method breaks the data into length L overlapping data segments repre-
sented as (n + iL).

xi(n) = x(n + iQ) n = 0, 1, ... , L – 1 i = 0, 1, ... , I – 1

where Q = (L – overlap).

A modified periodogram is then computed for each data segment given by

where

.

The Welch power spectrum estimate is the average of the modified periodogram of
each data segment, given by

.

To obtain uniform samples of the Welch estimate using SPECTRUM, set length
less than the data length, set overlap to a nonzero value and set Window_type to any
of the windows discussed in FIRWIN (page 70).

NOTE In estimating the power spectrum it is assumed that the input signal is sta-
tionary (i.e., the frequency content does not change with time). If the signal is non-
stationary, the functions SPECTROGRAM and WAVELET can often provide bet-
ter results than SPECTRUM.

Example

In this example, a multiple bandpass filter is designed and the power spectral den-
sity is estimated using SPECTRUM.

!P.Multi = [0, 1, 2]

Pi f( )
1

Lu
------ xi n( )w n( )e jπfn–

n 0=

L 1–

∑
2

=

u
1
L
--- w2 n( )

n 0=

L 1–

∑=

Pw f( )
1
I
--- Pi f( )

i 1=

I 1–

∑=
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f = [0, .18, .2, .22, .38, .4, .42, .58, .6, .62, $
.78, .8, .82, 1]

ampl = [0, 0, 5, 10, 10, 5, 0, 0, .5, 1, 1, .5,$
0, 0]

h = FIRLS(101, f, ampl, /Freqsample)

hf = FREQRESP_Z(h, Outfreq = f)

PLOT, f, 10.0d*ALOG(ABS(hf)^2), Title =$
’Filter Response’, XTitle = ’Frequency’,$
YTitle = ’Magnitude (dB)’

; Plot a multiple bandpass filter (Figure 2-41 (a)).

n = 10000

Length = 1024

Overlap = Length/2

RANDOMOPT, Set = 31

x = RANDOM(n, /Normal)

; Generate white noise.

y = FILTER(h, x)

; Generate colored noise.

sy = SPECTRUM(y, Length, Overlap)

m = FLOAT(N_ELEMENTS(sy))

PLOT, FINDGEN(m)/m, 10.0d*ALOG(sy), $
Title = ’Power Spectrum Estimate’, $
XTitle = ’Frequency’,$
YTitle = ’Magnitude (dB)’

; Plot the power spectral density of the multiple bandpass filter
; (see Figure 2-41 (b)).
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Figure 2-41 (a) A plot of a multiple bandpass filter, and (b) the plot of its power spectral
density estimate.

See Also

SPECTROGRAM, WAVELET

For Additional Information

Oppenheim and Schafer, 1975.

TOEPSOL Function
Solves symmetric Toeplitz linear equations using Levinson’s algorithm.

Usage

result = TOEPSOL(r, b)

Input Parameters

r — The first row of the Toeplitz matrix.

(a)

(b)
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b — The right-hand side of a linear equation.

Returned Value

result — An array containing the solution of the linear equation.

Keywords

None.

Discussion

Given the first row of the Toeplitz matrix

and the right hand side array b = [b(0), b(1), ... , b(m)]T, TOEPSOL is a fast algo-
rithm for solving the linear equation

Rx = b ,

for the array x.

NOTE TOEPSOL is for symmetric, positive, definite matrices only.

Example

TOEPSOL is one of a suite of functions (JURYRC, LEVCORR, LEVDURB, and
TOEPSOL) used to solve Toeplitz linear equations and factorization problems. For
an example demonstrating the use of TOEPSOL, see the description of JURYRC
(page 129).

For Additional Information

Proakis and Manolakis, 1992.

Roberts and Mullis 1987.

R m( )

r 0( ) r 1( ) r m( )
r 1( )

r 1( )
r m( ) r 1( ) r 0( )

=
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WAVELET Function
Computes the wavelet transform of a data sequence using compactly supported
orthonormal wavelets.

Usage

result = WAVELET(h, x, n)

result = WAVELET(h, waveletstruct, /Backwards)

Input Parameters

h — A perfect reconstruction quadrature mirror filter in a filter structure, such as
may be obtained using QMFDESIGN.

Parameters specific to the forward wavelet transform (the default transform):

x — The data sequence to be transformed.

n — (scalar) The number wavelet transform levels.

Parameters specific to the backward wavelet transform (with the Backwards
keyword):

waveletstruct — The output of the forward transform.

NOTE For the backward transform, the input parameter h must be a digital filter
structure designed using QMFDESIGN.

Returned Value

Forward wavelet transform (default):

result — A data structure containing the coefficients of the forward wavelet
transform.

Backward wavelet transform (with the Backwards keyword):

result — (array) The signal reconstructed from the wavelet transform coefficients.
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Keywords

Backwards — If present and nonzero, the original signal is reconstructed from the
wavelet transform coefficients.

Discussion

Computing the wavelet transform of a signal using a compactly supported orthor-
nomal wavelet is equivalent to applying the quadrature mirror filter-bank structure
shown in Figure 2-42 to the signal.

Figure 2-42 Filter structure for computing the forward wavelet transform.

The details of how and why the structure in Figure 2-42 is connected to a com-
pactly supported orthonomal wavelet are found in Akansu and Haddad, 1992;
Daubechies, 1988, and 1992; Rioul and Vetterli, 1991; and Vaidyanathan, 1993.

The input and output sequences of each block in Figure 2-42 represents the inputs
and output of the forward part of the QMF structure discussed in the procedure
QMF, Figure 2-32 on page 178. The specific input-output relation between each
block and the filter structure shown in Figure 2-32 is illustrated in Figure 2-43.

Figure 2-43 Basic computational cell in the forward wavelet transform structure.

WAVELET requires a quadrature mirror filter be supplied. Such a filter is obtained
by using the QMFDESIGN function.
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The output sequences x1, x2, x3, ... are the coefficients of the wavelet transform. The
input parameter n specifies the number of levels of the wavelet transform structure
to compute. For n levels of the wavelet transform, n + 1 output sequences are gen-
erated. WAVELET returns a PV-WAVE data structure. PARSEWAVELET
provides access to the information in that data structure.

The backwards wavelet transform is computed using the filter bank structure
shown in Figure 2-44.

Figure 2-44 Filter structure for computing the backward wavelet transform.

The input and output sequences of each block in Figure 2-44 represents the inputs
and output of the backward part of the QMF structure discussed in the procedure
QMF, Figure 2-32 on page 178. The specific input-output relation between each
block and the filter structure in Figure 2-32 is illustrated in Figure 2-45.

Figure 2-45 Basic computational element in the backward wavelet transform structure.

Example

This example illustrates how to compute the wavelet transform of a speech
segment.

(UNIX) file = ’$VNI_DIR/sigpro-1_1/test/voice.dat’

(OpenVMS) file = ’VNI_DIR:[SIGPRO-1_1.TEST]VOICE.DAT’

(Windows) file = GETENV(’VNI_DIR’)+ $
’\sigpro-1_1\test\voice.dat’
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OPENR, 1, file

x = BYTARR(7519)

READU, 1, x

CLOSE, 1

x = DOUBLE(x)

; Read in voice signal saying “PV-WAVE.”

m = 5

kz = [1.d, 1.d]

FOR i = 1, m-1 DO Kz = P_MULT([1.d, 1.d], kz)

; Determine the coefficients of the polynomial K(z) = (1 + z–1)m

; to design the Daubechies QMF that generates wavelet
; with m vanishing moments.

h = QMFDESIGN(kz)

; Design a QMF using the factor K(z).

n = 4

wstruct = WAVELET(h, x, n)

; Compute a 4-level wavelet transform.

x1 = PARSEWAVELET(wstruct, 1)

x2 = PARSEWAVELET(wstruct, 2)

x3 = PARSEWAVELET(wstruct, 3)

x4 = PARSEWAVELET(wstruct, 4)

x5 = PARSEWAVELET(wstruct, 5)

; Extract the different coefficient sequences from the wavelet
; data structure.

!P.Multi = [0, 1, 3]

PLOT, x, XStyle = 1, Title = ’Original Signal’

PLOT, x2, XStyle = 1, Title = $
’Wavelet Coefficients, Level 2’

PLOT, x4, XStyle = 1, Title = $
’Wavelet Coefficients, Level 4’,$
XTitle = ’Time’

; Plot the original signal (Figure 2-46 (a)) and the wavelet
; coefficients from levels 2 and 4 (Figure 2-46 (b) and (c),
; respectively).

y = WAVELET(h, wstruct, /Backward)

; Compute the inverse wavelet transform.

PM, MAX(ABS(x-y)), Title = $
’Maximum Reconstruction Error’
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Maximum Reconstruction Error
5.4001248e-13

; Compute the maximum error in computing the forward
; and backward wavelet transform.

Figure 2-46 (a) The plot of the original voice signal saying “PV-WAVE,” and (b) its level 2
and (c) level 4 wavelet coefficients.

See Also

FILTDOWN, FILTUP, PARSEWAVELET, QMF, QMFDESIGN

For Additional Information

Akansu and Haddad, 1992.

Daubechies, 1988, and 1992.

Rioul and Vetterli, 1991.

Vaidyanathan, 1993.

(a)

(b)

(c)
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ZEROPOLY Function
Finds the zeros of a polynomial with real or complex coefficients using the com-
panion matrix method or, optionally, the Jenkins-Traub, three-stage algorithm.

Usage

result = ZEROPOLY(coef)

Input Parameters

coef — An array containing the coefficients of the polynomial in increasing order
by degree. The polynomial is of the form

coef (n) zn + coef (n – 1) z(n – 1) + … + coef (0) .

Returned Value

result —The complex array of zeros of the polynomial.

Keywords

Companion — If present and nonzero, the companion matrix method is used.
(Default: companion matrix method)

Double — If present and nonzero, double precision is used.

Jenkins_Traub — If present and nonzero, the Jenkins-Traub, three-stage algo-
rithm is used.

Discussion

ZEROPOLY computes the n zeros of the polynomial

p (z) = an zn + an – 1z(n – 1) + … + a1 z + a0

where the coefficients ai for i = 0, 1, ... , n are real and n is the degree of the
polynomial.

The default method used by ZEROPOLY is the companion matrix method. The
companion matrix method is based on the fact that if Ca denotes the companion
matrix associated with p(z), then
det (zI – Ca) = p(z), where I is an n-by-n identity matrix. Thus,
det (z0I – Ca) = 0 if, and only if, z0 is a zero of p(z). This implies that computing
the eigenvalues of Ca will yield the zeros of p(z). This method is thought to be more
robust than the Jenkins-Traub algorithm in most cases, but the companion matrix
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method is not as computationally efficient. Thus, if speed is a concern, the Jenkins-
Traub algorithm should be considered.

If the keyword Jenkins_Traub is set, ZEROPOLY uses the Jenkins-Traub three-
stage algorithm (Jenkins and Traub, 1970; Jenkins, 1975). The zeros are computed
one-at-a-time for real zeros or two-at-a-time for a complex conjugate pair. As the
zeros are found, the real zero or quadratic factor is removed by polynomial
deflation.

Warning Errors

MATH_ZERO_COEFF— The first several coefficients of the polynomial are equal
to zero. Several of the last roots are set to machine infinity to compensate for this
problem.

MATH_FEWER_ZEROS_FOUND— Fewer than (N_ELEMENTS (coef) – 1) zeros
were found. The root array contains the value for machine infinity in the locations
that do not contain zeros.

Example

This example finds the zeros of the third-degree polynomial

p (z) = z3 – 3z2 + 4z – 2

where z is a complex variable.

coef = [-2, 4, -3, 1]

; Set the coefficients.

zeros = ZEROPOLY(coef)

; Compute the zeros.

PM, zeros, Title = ’The complex zeros found are: ’

The complex zeros found are:

( 1.00000, 0.00000)

( 1.00000, -1.00000)

(  1.00000, 1.00000)

; Print the complex polynomial results.

See Also

ROOT2POLY

For Additional Information

Jenkins, 1975.

Jenkins and Traub, 1970.
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APPENDIX

B

Related Routines
This appendix lists routines from PV-WAVE, PV-WAVE:IMSL Statistics, and
PV-WAVE:IMSL Statistics that can be useful in digital signal processing applica-
tions. For detailed information on these routines, refer to the PV-WAVE Reference,
PV-WAVE:IMSL Statistics Reference, and the PV-WAVE:IMSL Statistics Reference.

PV-WAVE Routines

ABS(x)
Evaluates the absolute value function.

ATAN(x [, y])
Returns the angle, whose tangent is x, expressed in radians. If two parameters are sup-
plied, the angle whose tangent is equal to y/s is returned. The range of ATAN is between
–π/2 and π/2 for the single argument case and between –π and π if two arguments are
given.

COMPLEX(real [, imaginary])
Converts an expression to complex data type.

DERIV([x, ]y)
Performs numerical differentiation using three-point Lagrangian interpolation.

FFT(array, direction)
Returns the Fast Fourier Transform for the input variable.

HANNING(col [, row])
Standard Library function that implements a window function for Fast Fourier Transform
signal or image filtering.
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POLY(x, coefficients)
Standard Library function that evaluates a polynomial function of a variable.

REVERSE(array, dimension)
Standard Library function that reverses a vector or array for a given dimension.

PV-WAVE:IMSL Statistics Routines

ARMA(array, p, q)
Computes method-of-moments or least-squares estimates of parameters for a nonsea-
sonal ARMA model.

CHISQCDF(expr, n)
Evaluates the chi-squared distribution function. Using a keyword, the inverse of the chi-
squared distribution can be evaluated.

PV-WAVE:IMSL Mathematics Routines

BESSI(order, z)
Evaluates a modified Bessel function of the first kind with real order and real or complex
parameters.

CHISQCDF(expr, n)
Evaluates the chi-squared distribution function. Using a keyword, the inverse of the chi-
squared distribution can be evaluated.

CHNNDSOL(matrix [, matrix])
Solves a real symmetric nonnegative definite system of linear equations Ax = b. Com-
putes the solution to Ax = b given the Cholesky factor.

CSINTERP(array, array)
Computes a cubic spline interpolant, specifying various endpoint conditions. The
default interpolant satisfies the not-a-knot condition.

EIG(matrix)
Computes the eigenexpansion of a real or complex matrix A. If the matrix is known to
be symmetric or Hermitian, a keyword can be used to trigger more efficient algorithms.

EIGSYMGEN(matrix, matrix)
Computes the generalized eigenexpansion of a system Ax = λBx. The matrices A and
B are real and symmetric, and B is positive definite.

ERF(x)
Evaluates the real error function erf(x). Using a keyword, the inverse error function
erf–1(x)  can be evaluated.
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ERFC(x)
Evaluates the real complementary error function erfc(x). Using a keyword, the inverse
complementary error function erfc–1(x) can be evaluated.

GAMMA(x)
Evaluates the real gamma function Γ(x).

GAMMACDF(x, +param)
Evaluates the gamma distribution function.

LNGAMMA(x)
Evaluates the logarithm of the absolute value of the gamma function log|Γ(x)|.

NORMALCDF(expr)
Evaluates the standard normal (Gaussian) distribution function. Using a keyword, the
inverse of the standard normal (Gaussian) distribution can be evaluated.

SPINTEG(a, b, c, d, structure)
Computes the integral of a one- or two-dimensional spline. (PV-WAVE Reference)

SVDCOMP(matrix)
Computes the singular value decomposition (SVD), A = USVT, of a real or complex
rectangular matrix A. An estimate of the rank of A also can be computed.
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Signal Processing Index

A
absolute value, error estimate 119
accuracy

absolute 75, 119, 127
relative 76, 119

algebraic-logarithmic singularities, function in-
tegration method 121

all-pass filter
equation 90
frequency transformation 88
numerator polynomial 92

all-pole filter
IIR 140
prediction 138

analog
filter

frequency response evaluation 84
lowpass use in IIRDESIGN 100

signal 7
transfer function 10, 33

frequency response evaluation 84
frequency response example 84

angle
phase 31
shift 95

anti-aliasing filter 47
anti-causal filtering, example 20, 108
approximation criteria 198
ARG function 31

See Also filter, analysis
example 32

array, norms 27
autocorrelation

modeling, autoregressive signal 138
sequence

autoregression 134

equation 140
noise 62
noise equation 65
signal 62
signal equation 65
Toeplitz matrix from Cholesky

factored form 131
autocovariance, sequence requirements 66
autoregression

autocorrelation sequence 134
signal modeling

autocorrelation method 138
example 140

signal, example 69

B
backward

basic computational element of wavelet
transform 222

filtering 106
Fourier transform

equations 41
two-dimensional equation 43

QMF computation 177
wavelet transform 220

bandpass filter
classical approximation 12
design 56
example 50, 58, 60
frequency transformation 89
ideal 12
lower frequency band edge 56
transform from IIRDESIGN lowpass

100
upper frequency band edge 56
windowed FIR design 56
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bandstop filter
classical approximation 12
design 56
frequency transformation 89
ideal 12
lower frequency band edge 56
transform from IIRDESIGN lowpass 100
upper frequency band edge 56
windowed FIR design 56

bank structure
quadrature mirror filter 221
wavelet transform

backward 222
forward 221

Bartlett’s method
estimate for rectangular window 216
non-overlapping data segments 215
power spectrum estimate 214

beta distribution 187, 190
bilinear transform

See Also BILINTRANS function
classical filter approximation 14
equation 33
ideal lowpass filter, analog to digital 100

BILINTRANS function 33
example 34

Blackman window
design 70
equation 71
example 58, 73

Bode plot 10
boxcar window

See rectangular window
Butterworth filter

design 98
equation 99
example 90, 100, 112, 113, 115, 159,

173
magnitude and phase response 11
minimum filter order 114

C
canonic forms 8
Cauchy principle value 126
causal and anti-causal filtering, example 20,

107
Chebyshev

error criteria, constraints 18

filter design, types I and II 98
moments 124
type I filter

equation 99
example 101, 116
minimum filter order 114

type II filter
equation 100
example 102, 116
minimum filter order 114

window
design 70
equations 71
example 73

Cholesky
decomposition 134

example 130
matrix 133

factor 191
factorization 133

Toeplitz form autocorrelation
sequence 131

Toeplitz form synthesis 129
variance-covariance matrix 191

coefficients
convolution 170
denominator polynomial 9, 159
filter

discussion of 8
example 9

linear prediction 24
all-pole filter 138

numerator polynomial 9, 159
real

discussion of 111
division 169

reflection 24, 129, 133, 203
reversing 26
stability in denominator 112

comb plot 28, 162
comb plot overlay 28, 154
common variables

See SIGPRO_COMMON
compactly supported orthogonal wavelets 220
companion matrix method, real / complex poly-

nomial zeros 225
complementary polynomial 89
complex

array
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magnitude 10
phase 10

frequency response 10
numbers

angle shifting 95
conjugate pairing 25, 156
polar form 32
real and imaginary 156
reciprocal pairing 25, 157
transform parameters 44

plane, analog filter frequency response
84

conjugate pairs, complex values 156
constraints

active 147
Chebyshev error criteria 18
coefficients 135
equality 147
least-squares error criteria 18
linear equality, inequality 184
linearizing 150
moment preserving criteria 18
table of general constraints 136

continuously differentiable functions 150
CONVOL1D function 35

See Also polynomial, manipulation
example 36
polynomial multiplication 170
use in FIRFILT 60

convolution
circular 35
CONVOL1D function 35
direct method 35
discrete 35
end effect reduction 60
equation 35
FFT based FIR filter realization 19
FFT method 35
FIRFILT operation 59
one-dimensional 25
operation 7

Cooley-Tukey algorithm 41, 42
coprime polynomials 182
correlation and regression analysis, Hilbert

transform 95
cosine wave

example 43, 209
function integration method 124
generation 208

covariance sequence
See autocovariance, sequence

covariance-variance matrix 187
cubic interpolation method 77
cutoff frequency

decimation factor effect 48
displaying on a frequency response plot

195
frequency transformation 89
normalized 11, 54

D
data structures

digital filter 9, 10
table of filter structure functions 9

data-fitting problem, nonlinear 145
Daubechies

compactly supported, orthogonal
wavelet 182

quadrature mirror filter
example 182, 223

DBLPOLY function 37
See Also polynomial, manipulation
complex parameter 37
example 37
Horner’s method 37

DCMPLXFFT procedure 38
decimation

See Also FILTDOWN function
backward QMF input 177
factor 45, 47
filter design 18
filter order 47
forward QMF outputs 177
multirate filter realization 21

degree of polynomial 167
denominator polynomial

coefficients 159
filter structure 51
roots 164

deterministic frequency-domain 62
diagonal matrix

factor 129, 131, 133
scaling 142

differentiator filter 197
digital

transfer function 10, 33
transfer function, frequency response
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evaluation 86
transfer function, frequency response

example 87
digital filter

analysis 10
approximation 12
data structure 10
definition 8
frequency response analysis 10
impulse response 116
impulse response analysis 10
realization 19

Dirichlet wave
example 209
generation 208

discrete Fourier transform (DFT) 111
dividing polynomials 168
double precision

complex fast Fourier transform 22
complex polynomial zeros 225
fast Fourier transform 38
filter structure coefficients 9
phase angle computation 31
polynomial evaluation 25, 37
real parameter computation of FFT 44

down-sampling
equation 46
operation 45

E
eigenvalues 35, 225
eigenvectors 35
elliptic filter

design 98
equation 100
example 103, 108, 116, 165
minimum filter order 114

end effects reduction 60
equality constraints 147
Erlang distribution 190
error

absolute value 119
minimization 65
minimization of least-squares matrix

equation 110, 111
prediction variance 129

Euclid algorithm 181
Euclidean norm 153

exit Toolkit 5
exponential

deviate 189
distribution 187, 189

extracting polynomials from a filter structure
159

F
fast Fourier transform (FFT)

complex 44
discrete computation 39
double precision

complex 38
real 44

double precision complex 22
initialization 22
is fundamental tool 22
one-dimensional and complex 41
real 44

one-dimensional 41
real/complex

initialization 44
one-dimensional 39, 40, 226
two-dimensional 42

FFTCOMP function 39
See Also transform, analysis
example 43
input from FFTINIT 44

FFTINIT function 44
See Also transform, analysis
complex parameters 44
efficiency versus FFTCOMP 39
use with FFTCOMP 44

FILTDOWN function 45
See Also multirate filter, realization
decimation 45
examples 46
multirate signal processing 45
use in QMF procedure 178

FILTDOWNDESIGN function 47
See Also multirate filter
anti-aliasing filter 47
example 47
filter approximation, Hamming window 47
filter design for FILTDOWN 47

filter
all-pole IIR 140
all-pole prediction 138
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analysis
table of functions 10
usage, example 11

approximation 12
approximation, classical 12
Butterworth 11, 14, 98
Chebyshev type I 14, 98
Chebyshev type II 14, 98
coefficients 8
coefficients, example 9
data structure 9
decimation 18
design flexibility 66
differentiator 197
digital 8
elliptic 14, 98
Hilbert transform 197
impulse response 10, 116
interpolation 18
lowpass IIR 98
multiple bandpass

FIR 14
IIR 14

multiple passband / stopband 197
optimal linear-phase interpolator 54
quadrature mirror 18, 177, 181
reverse operation 107
stabilization 112
Wiener 24

filter approximation
Butterworth, Chebyshev types I and II, and

elliptic 98
ideal filters

lowpass, highpass, bandpass,
bandstop 56

time-domain or frequency-domain least
squares IIR 109

using FILTDOWNDESIGN 47
filter bank, wavelet transform

backward 222
forward 221

FILTER function 49
See Also filter realization
determines filter structure type 49
example 49

filter order
design 54, 98
determination of minimum 114
estimation 14

minimum 100
numerical instability 90

filter realization
decimation 45
FIR example 19
IIR example 20
interpolation 52
multirate 21
table of FIR and IIR functions 19
table of multirate routines 21
transposed direct form II filter structure

105
using IIRFILT 105

filter structure
See Also data structures
See Also FILTER function
analog 84
application 59
construction 51
data 33
design 56
determination 49
digital 86
double precision coefficients 9
equation 51, 58
example 9
extracting polynomials 159
numerator and denominator

polynomials 51
parsing into numerator and denominator

polynomials 159
table of data structure functions 9
transposed direct form II 105

FILTSTR function 51
See Also filter structure
example 51
filter structure, construction 51

FILTUP function 52
See Also multirate filter, realization
example 53
use in QMF procedure 178

FILTUPDESIGN function 54
See Also multirate filter
example 54
filter design for FILTUP 54

finite impulse response
See FIR filter

FIR filter
classical approximation 14
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definition 8
design

optimal linear-phase, Remez
algorithm 197

Prony time-domain least squares
method 109

quadrature mirror filter 181
Savitsky-Golay 204
Wiener filter 24
window functions 14
windowed bandpass, example 14

deterministic frequency-domain 62
filter structure design 56
lowpass, highpass, bandpass, bandstop

56
quadrature mirror application 177
statistical time-domain, least-squares,

linear-phase 62
table of approximation functions 14
window functions 14

FIR filter realization
See Also filter realization
decimation 45
discussion 19
interpolation 52

FIRDESIGN function 56
example 58
use in FILTDOWNDESIGN 47

FIRFILT function 59
See Also filter realization
called by FILTER 49
example 60

FIRLS function 62
See Also least-squares filter
See Also statistical, signal processing
example 67, 68
Toeplitz matrix 66

FIRWIN function 70
example 72
window types for SPECTROGRAM 211
window types for SPECTRUM 214

FMIN function 75
See Also optimization
example 78

FMINV function 80
See Also optimization
example 83

forward-backward filtering
See Also causal and anti-causal filtering

equation 106
signal flow diagram 107
zero-phase response 107

Fourier
analysis

example, SPECTROGRAM 22
non-stationary signals, using

WAVELET 22
integral 210
transform

short-time 211
sine and cosine 119
sine or cosine integration 125

FREQRESP_S function 84
See Also analog filters
See Also filter, analysis
example 84
use with FREQRESP_Z 87

FREQRESP_Z function 86
See Also filter, analysis
example 87

FREQTRANS function 88
example 90
FREQTRANSDESIGN requirement 90
numerator polynomial design 92
transform IIRDESIGN lowpass filter 100

FREQTRANSDESIGN function 92
example 93
polynomial requirements 90

frequency
Butterworth filter response 11
cutoff 11, 115
domain

Fourier integral sampling theorem
210

least squares filter approximation
109

least squares method 110
least-squares approximation

technique 62
lower band edge 56
non-normalized plotting 3
normalized 3, 11, 87
Nyquist 3
passband and stopband edge 98

constraint satisfaction 114
response

analog filter 84
analog transfer function 84
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complex 10
digital filter 86
ideal filters 14
plotting with reference lines 195
sample interpolation 111

sampling method 24
transform

lowpass filter 88
lowpass to multiple bandpass filter

92
transition

band specification 66
region 66

upper band edge 56

G
Gabor transform 211
gamma distribution 187, 190
gamma function 190
Gaussian distribution 189
Gauss-Kronrod rules

function integration 120
table of quadrature rules 120

geometry, vector norms 152
gradient, evaluation accuracy 83

H
Hamming window

design 70
equation 72
example 73

Hanning window
design 70
equation 72
example 73

Hessian
matrix 80, 184, 186
positive definite approximation 150

highpass filter
classical approximation 12
design 56
frequency

band edge 56
transformation 89

ideal 12
transform from IIRDESIGN lowpass 100
windowed FIR design 56

Hilbert
matrix 95
series correlation properties 95
transform 95
transform filter 197

HILBERT function 95
HILBERT function, example 96
Horner’s method 37, 84

I
ideal filters

bandpass 12, 56
bandstop 12, 56
frequency response 14, 57
highpass 12, 56
lowpass 12, 56

frequency transformation 88
halfband design on unit circle 182
transformation to multiple

bandpass 92
use in IIRDESIGN 100

IIR filter
all-pole stable filter structure 140
Butterworth 98
Chebyshev types I and II 98
definition 8
design

Butterworth, Chebyshev types I and
II, and elliptic 98

classical approach 15
multiple bandpass 16
PV-WAVE:Signal Processing Toolkit

approach 16
elliptic 98
least squares approximation 109
realization

description of 19
example of causal and anti-causal

filtering 20
table of approximation functions 14
zero-phase response 107

IIRDESIGN function 98
elliptic filter example 103
example 159

Butterworth filter 100
Chebyshev type I filter 101
Chebyshev type II filter 102

IIRFILT function 105
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See Also filter realization
called by FILTER 49
example 107
impulse response 117
Jury algorithm 107

IIRLS function 109
See Also statistical, signal processing
example 112, 113

IIRORDER function 114
example 115

IMPRESP function 116
See Also filter, analysis
example 117
use of IIRFILT 117

impulse response
and its inverse z-transform 110
digital filter 116
filter approximation 57
of a filter 10
sequence 110
sequence, real 111

infinite impulse response
See IIR filter

infinite or semi-infinite interval, function integra-
tion method 123

initialization
fast Fourier transform (FFT) 22
PV–WAVE:Signal Processing Toolkit 5

integral
estimate 118
2-dimensional iterated 119, 127

integration
algebraic-logarithmic singularities 121
based on Gauss-Kronrod rules 120
function 118
infinite or semi-infinite interval 123
optional methods available 119
quadrature 27
sine or cosine factor 124
singular points given 121
smooth function 127
2-dimensional multivariate 127
univariate / bivariate

algebraic-logarithmic singularities
121

Cauchy principle 126
Fourier sine or cosine transform 125
Gauss-Kronrod rules 120
infinite or semi-infinite interval 123

nonadaptive rule 127
sine or cosine factor 124
singularity points 121
smooth function 127

interpolation
cubic method 77
example 67, 113
factor 52, 54
filter 52
filter design 18
frequency points

least squares solution 64
uniform grid 64

multirate filter realization 21
quadratic 77
sampled frequency response 111
trigonometric polynomial solution 64
upsampling 52
use in FIRLS 62

INTFCN function 118
See Also optimization

inverse
discrete Fourier transform equation 111
FFT computation 38
matrix, Jacobian 143
QMF operation 179
relationship, LEVCORR and LEVDURB

procedures 134
TOEPSOL operation 130
wavelet transform 223
z-transform equation 110

inverse CDF method
beta distribution 190
Poisson distribution 189

J
Jacobian matrix 143
Jenkins-Traub three-stage algorithm 225
Jury algorithm 24, 107, 129
JURYRC procedure

See Also statistical, signal processing
example of JURYRC, TOEPSOL,

LEVCORR relationship 130

K
Kaiser window

design 70
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equation 72
example 73
use in SPECTROGRAM 211
use in SPECTRUM 214

L
Lagrange

augmented function 150
multiplier 184
quadratic approximation 150

least squares
error criteria 18
error minimization 139
filter 62
filter, table of approximation functions 18
IIR filter approximation 109

LEVCORR procedure 131
See Also statistical, signal processing
example 131
inverse LEVDURB operation 133

LEVDURB procedure 133
See Also statistical, signal processing
example 134
inverse LEVCORR operation 133

Levenberg-Marquardt algorithm 142
Levinson’s algorithm

solving Toeplitz linear equations 24, 218
Levinson-Durbin algorithm

See LEVDURB procedure
linear

constraints 184
prediction coefficients 24

computation 138
stable all-pole filter structure 140

programming problem
double precision 135
equations 136

programming, constrained minimization
27

system models 7
linearizing constraints 150
linear-phase

FIR filter
amplitude frequency response 63
approximation 62
optimal design 205
types of symmetry 63

FIR filter design 199

FIR filter optimal design 197
LINPROG function 135

See Also optimization
example 137

lowpass filter
analog

example 34
use in IIRDESIGN 100

Butterworth 11
Butterworth example 90, 93
classical approximation 12
design 56, 98
elliptic, example 20
frequency

band edge 56
transformation 88

frequency response
analog example 84
digital example 87

ideal 12
ideal halfband design 182
multiple bandpass transform

example 93
quadrature mirror filter 177
windowed FIR design 56

LPC function 138
See Also statistical, signal processing
example 140
Toeplitz linear equation solution 139

M
machine

epsilon 167
infinity 226
precision 76, 81, 119, 127, 144

magnitude response, example 11
matrix

Cholesky decomposition 133
companion method for polynomial

zeros 225
diagonal 131, 133

factor 129
scaling 142

Hessian 80
Hilbert transform 95
identity 80
Jacobian 143

inverse 143
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Toeplitz 219
triangular 129, 131, 133
variance-covariance 187

Cholesky factorization 191
maximum entropy method, spectrum analysis

138
merit function 150
minimization

accuracy of gradient evaluation 83
constrained

linear programming 27
quadratic programming 27

error 65, 205
least squares error

system of equations 110
least squares error, system of equations

139
least-squares equation error 111
linearly constrained

quadratic programming 184
simplex algorithm 135

nonlinearly constrained, successive
quadratic programming method 147

quadratic interpolation 77
unconstrained

multivariate 27
nonlinear least squares 27, 142
nonlinear programming 27
quasi-Newton method 80, 82
univariate 27, 75

univariate smooth function 75
weighted Chebyshev error 198

minimum
filter order 100

determination 114
phase of spectral factor 171
point of a smooth function

See FMIN function
mirroring polynomial roots for stability 173
models

linear systems 7
Toeplitz covariance matrix 24

moments
constraints 205
preservation criteria 18
preserved 204
vanishing 182, 223

monic polynomial 129
multiple bandpass filter

example 68, 200, 216
FIR 14
lowpass transformation 92

multiple passband / stopband filter 197
multiplying polynomials 169
multirate filter

approximation 18
table of functions 18

realization 21
quadrature mirror filter 178
table of routines 21

multirate signal processing
with down-sampling 45
with up-sampling 52

multivariate
normal distribution 187, 191
unconstrained minimization 27

N
Newton-Raphson iterations 182
NLINLSQ function 142

See Also optimization
example 145

noise-corrupted
observation 65
signal filtering 205

nonlinear
data fitting, example 145
least squares problems 142
least squares problems, double precision

solution 142
least squares, unconstrained

minimization 27
programming of nonlinearly unconstrained

minimization 27
programming problems 149

double precision solution 148
NONLINPROG function 147

See Also optimization
example 151

non-normalized inverse
See backward, Fourier transform

non-stationary input signal 22, 216
NORM function 152

See Also optimization
example 153

normal
distribution 187, 189
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distribution, inverse CDF method 187
random wave generation 208

normal random variables
See Also RANDOM, RANDOMOPT
quadratic forms 24
tools for generating 24

normalized
cutoff frequency 54
frequency 11, 87

numerator polynomial
coefficients 159
filter structure 51
roots 164
stable all-pass filter 92

numerical integration 27
Nyquist

frequency 199
normalized frequency 3, 215

O
OPLOTCOMB procedure 154

See Also plotting
example 154

optimal filter design
Chebyshev error FIR filter 18
linear-phase

interpolator filter 54
Wiener technique 65

linear-phase FIR filter
Remez algorithm 197
Savitsky-Golay 205
Wiener filter 24

Savitsky-Golay FIR filter 18
optimization

filter design, constraints and error
functionals 27

table of PV-WAVE Advantage functions
27

overlapping data segments 211

P
PAIRCONJ function 156

See Also polynomial, manipulation
example 156, 158

PAIRINV function 157
See Also polynomial, manipulation
example 158

parse, filter structure 159
PARSEFILT procedure 159

See Also filter structure
example 159

PARSEWAVELET function 161
example 222
WAVELET data structure 222

passband
frequency edge 98

constraint satisfaction 114
ripple 98

constraint satisfaction 114
P_DEG function 167

See Also polynomial, manipulation
example 167

P_DIV procedure 168
See Also polynomial, manipulation
example 169

periodic
data sequence 59
Dirichlet wave 208
sinc function 207

periodogram
Bartlett’s method 215
equation 215
power spectrum estimate 214

periodogram, modified
equation 215
power spectrum estimate 214
Welch’s method 216

phase
angle, double precision computation 31
distortion 20
response

example 11
shift 95

PLOTCOMB procedure 162
See Also plotting
example 154, 162

plotting
actual frequency values 3
comb plot 162

overlay 154
reference lines for frequency response

plot 195
table of routines 28
waterfall 211
zero-pole or root locus plot 164

PLOTZP procedure
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See Also plotting
example 165

P_MULT function 169
See Also polynomial, manipulation
example 170

Poisson distribution 188, 189
polar form, complex number 32
poles and zeros

plotting 164
reflection for stability 172

poles, denominator polynomial roots 164
polynomial

coefficients in z–1 89
complementary 89
construction from roots 201
coprime 182
deflation 226
denominator of a filter structure 51
evaluation

double precision 37
Horner’s method 84

interpolation solution 64
manipulation 25

addition 25, 175
computing coefficients 25
construction 201
degree determination 25, 167
dividing two polynomials 25, 168
extending Toolkit functionality 25
finding zeros 25
function evaluation 25
multiplying two polynomials 25, 169
one-dimensional convolution 25
pairing complex conjugates 25
pairing complex reciprocals 25
polynomials in z–1 26
root finding 25, 225
Schur-Cohn stability test 26
simultaneously in z and z–1 26
spectral factorization 25, 171
stability test 203
stabilizing a filter polynomial 26,

172
standard polynomials 25
table of polynomial in z–1 functions

26
table of standard polynomial

routines 25
numerator

maximum generated order 92
stable all-pass filter 92

numerator of a filter structure 51
parse coefficients 159
product 170
quotient 168
reflection coefficients 203
remainder 168
spectral factorization 171
stability 90
stability determination 203
stabilization 172
stable monic 129
sum 175

positive weight function 198
power spectrum

analysis 22
computation 212
density 22
estimate 214

Bartlett’s method 214
modified periodogram 214
periodogram 214
Welch’s method 214

image 211
prediction

error variance 129
filter

all-pole 138
order 138

Prony method
example 112
statistical signal processing 24
time-domain least squares method for FIR

filter design 109
pseudorandom numbers

generation 186
generator 192

P_SQRT function 171
See Also polynomial, manipulation
example 172

P_STAB function 172
See Also polynomial, manipulation
example 173
stabilizing IIRLS filter design 112

P_SUM function 175
See Also polynomial, manipulation
example 175

PTPE method 189
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Q
QMF procedure 177

See Also multirate filter, realization
example 179
quadrature mirror filter bank 221

QMFDESIGN function 181
See Also multirate filter
example 182
input for WAVELET 220
use in QMF 178

QP
See quadratic, programming

QUADPROG function 184
See Also optimization
example 185

quadratic
approximation, Lagrangian 150
factor 226
interpolation method 76
programming

constrained minimization 27
convex problems 185
dual algorithm 185
linearly constrained 184
method, successive 147, 149

quadrature mirror filter
See Also QMF, QMFDESIGN
design 18, 181
equation 181
filter-bank structure 221
multirate filtering 178
multirate realization 21
perfect reconstruction 177, 220
structure 177

quasi-Newton method 80, 82
quotient polynomial 168

R
radians 31
RANDOM function 186

See Also statistical, signal processing
example 191
use of RANDOMOPT 193

random numbers
beta distribution 187, 190
exponential distribution 187, 189

gamma distribution 187
Gamma distribution 190
generation

double precision 187
pseudorandom numbers 186

generator
seed 188, 192
table of options 192

multivariate
normal distribution 187, 191

normal distribution 187, 189
Poisson distribution 188, 189
seed, generator control 192
uniform (0, 1) distribution 188
uniform distribution 188

random signal
example

normal 209
uniform 209

generation
normal wave 208
uniform wave 208

stationary model 24
RANDOMOPT procedure

See Also statistical, signal processing
example 194

RANDONOPT procedure 192
rational transfer function

analysis 10
classical signal processing 25
digital 33
example 9
model 8, 9
sampled equation 110

reciprocal pairs, complex values 157
rectangular window

design 70
equation 72
example 73
use in SPECTRUM 215

reference lines
creating 195
on a plot 28

reflection
coefficient 24, 129, 133, 203

See Also JURYRC procedure
polynomial roots for stability 172

REFLINES procedure
See Also plotting
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example 195
relative accuracy 76, 119
remainder polynomial 168
Remez exchange algorithm 197, 198
REMEZ function 197

example 200
response

frequency 10
impulse 10

reverse operation 107
See Also forward-backward

ripple
constraint satisfaction 114
passband and stopband 98

root
locus plot 164
procedure for finding 164
reflection for stability 172
stabilization 173

ROOT2POLY function 201
See Also polynomial, manipulation
example 202

roots, polynomial construction 201

S
Savitsky-Golay filter

design 18, 204
example 206

sawtooth wave
example 209
generation 208

SCHURCOHN function 203
See Also polynomial, manipulation
example 204
IIRLS stability verification 112

Schur-Cohn stability test 26, 90, 203
secant method of decent 77
SGFDESIGN function 204

example 206
short-time Fourier transform analysis 22, 211
shuffling 192
signal

cosine wave, example 43
generation 28

standard waves 207
table of routines 28

human voice 212, 222
modeling, autoregressive autocorrelation

method 138
non-stationary 22
processing

definition 7
one domain to another 22
polynomial manipulation 25
statistical 24

sine wave 179
example 96

stationary and non-stationary 216
stationary Fourier analysis 22

SIGNAL function 207
See Also signal, generation
example 208

Signal Processing Toolkit
starting (loading) 4
stopping (unloading) 5
test suite 6

SIGPRO_COMMON, common variables 5
SIGPRO_STARTUP 5
SIGPRO_TEST 6
SIGPRO_UNLOAD 5
simplex algorithm 135
SINC function 210
SINC function, example 210
sinc wave

example 209
generation 208

sine wave
example 96, 155, 179, 208
generation 208

singularity points
function integration method 121
strength 121

sinusoidal function, integration method 124
smooth function

integration using a nonadaptive rule 127
minimum point, double precision 75

smoothing experimental data 206
spectral factor, minimum phase 171
spectral factorization

polynomials 171
quadrature mirror filter design 181
scaling, use of REVERSE 171

spectrogram
power spectrum image 211
transform analysis 22

SPECTROGRAM function 211
See Also spectrum analysis
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example 212
FIRWIN windows 211
non-stationary input signal 216

spectrum analysis
maximum entropy method 138
power spectral density 22
table of functions 22

SPECTRUM function 214
See Also spectrum analysis
example 216
FIRWIN windows 215
stationary input signal 216

square wave
example 209
generation 208

stability
filter polynomial 172
test for polynomials 203

stabilize unstable filter 112
stable all-pass filter

frequency transformation 88
numerator polynomial 92

starting the PV-WAVE:Signal Processing
Toolkit 4

stationary and non-stationary input signals
216

stationary signal analysis 22
statistical

signal processing
normal random variables 24
quadratic forms 24
stationary signals 24
table of routines 24
Toeplitz covariance matrix models

24
Toeplitz suite applications 131

time-domain
least-squares, linear-phase FIR filter

62
Wiener approximation technique 62

stopband
frequency edge 98

constraint satisfaction 114
ripple 98

constraint satisfaction 114
stopping the PV-WAVE:Signal Processing

Toolkit 5
subintervals of a sequence 119

successive quadratic programming method
149

symmetry properties of discrete Fourier
transform 111

T
time-domain

FIR filter design using Prony’s method
110

least squares filter approximation 109
Toeplitz

autocorrelation sequence computation
24

covariance matrix
models 24
suite of routines 24

factored forms 24
factoring matrices 24
Levinson’s algorithm 24, 218
Levinson-Durbin algorithm 24
linear equation 24, 218
linear prediction coefficients solution

140
matrix

Cholesky decomposition 134
Cholesky factorization 133
Cholesky-factored form 129
equation 129, 132, 219
reflection coefficients 133
symmetric 130
use in FIRLS 66

routines
JURYRC procedure 129
LEVCORR procedure 132
LEVDURB procedure 133
TOEPSOL function 219

TOEPSOL function 218
See Also statistical, signal processing
example 130
symmetric, positive, definite matrices

219
use in LPC 140

transfer function
analog 10, 33

Bode plot 10
digital 10
linear 7
models 24
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rational 8, 9, 25
example 9

system 7
time-invariant 7

transform
analog to digital

example 34
analysis 22

short-time Fourier 22
spectrogram 22
table of functions 22

bilinear 14, 33
complex FFT with double precision 22
discrete fast Fourier 39
fast Fourier (FFT) 22
Fourier inverted, equation 41
Gabor 211
real-to-complex, 2-dimensional 39
short-time Fourier 211
stage index 161
wavelet 22, 220

backward 220
forward 220
parsing coefficients 161

z-transform 8
transition

amplitude response requirement 66
band specification 66

example 68
region 66

triangular
matrix factor, upper 129, 131, 133
window

design 70
equation 72
example 73

trigonometric
polynomial interpolation 64
weighting function 124

2-dimensional
fast Fourier transform

discrete computation of complex
array 42

equation for inverted 42
forward equation 42
real-to-complex 39

iterated integrals 119, 127

U
uniform

(0, 1) distribution 188
distribution 188
random wave generation 208

unit circle
choosing zeros 182
digital filter, frequency response 86
ideal halfband lowpass filter 182
reciprocal values, inside and outside 158
reflecting roots for stability 172

univariate
function 76
unconstrained minimization of function

27, 75
unstable filter 112
upper triangular matrix 129
up-sampling

equation 53
operation 52

V
vanishing moments 182, 223
variable, table of bound types 148
variance-covariance

Cholesky factorization of matrix 191
matrix 187

vector norms
See Also NORM function
Euclidean 153
infinity 152, 153
1-norm 152, 153

voice signal, example 212, 222

W
waterfall plot 211
wavelet

compactly supported orthogonal 220
data structure, extracting transform

coefficients 161
Daubechies 182
transform 22, 220

backward 220
coefficients 161
forward 161, 220
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WAVELET function 220
See Also spectrum analysis
example 222
extract transform coefficients 161
non-stationary input signal 216

weight function
positive 198
used in integration 122

Welch’s method
overlapping data segments 216
power spectrum estimate 214

Wiener
filter design 24
optimal filter design of linear-phase FIR

65
optimal linear-phase FIR filter response

24
statistical time-domain least squares FIR

approximation technique 62
example 68

windows
Blackman 70

equation 71
example 58

Chebyshev 70
equations 71

example of window types 72
FIR 14
FIR filter design 56
Hamming 58, 70

equation 72
Hanning 70

equation 72
Kaiser 70

equation 72
rectangular 70

equation 72
sequence 56, 57, 70
triangular 70

equation 72

Z
zero-order, coefficient normalization 130
zero-phase response of IIR filter 107
zero-pole plot 28, 164
ZEROPOLY function 225

See Also polynomial, manipulation
example 202, 226

polynomial form 171
polynomial stability 172

zeros
numerator polynomial roots 164
of a polynomial

companion matrix method 225
Jenkins-Traub three-stage

algorithm 225
unit circle placement 182

z-transform
in linear system model 8
inverse equation 110
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